Consideraciones teóricas sobre la perspectiva ecológica-evolutiva del cáncer

Autores/as

  • Armando Ernesto Pérez Cala hospital militar Dr. joaquìn Castillo Duany
  • Edgar Benítez Sánchez
  • Yelina de la Caridad Dominica Esteris

Resumen

El cáncer constituye un serio problema de salud a nivel mundial. La introducción de una perspectiva ecológica y evolutiva de las neoplasias malignas tiene como propósito un enfoque más sistémico y objetivo a la naturaleza de este heterogéneo grupo de enfermedades. Con el objetivo de un acercamiento a las ideas más generalizadas existentes en la actualidad sobre la perspectiva ecológica-evolutiva del cáncer, se realizó la presente revisión. El cáncer es un fenómeno universal que afecta a todas las formas de organismos pluricelulares. El riesgo de desarrollar tumores malignos se encuentra estrechamente relacionado con los patrones de historias de vida trazados por el proceso evolutivo, acorde a la necesidad adaptativa de los organismos a los diferentes nichos ecológicos que ocupan. Existe asociación entre el desarrollo evolutivo de mecanismos protectores contra tumores malignos y el costo evolutivo de estos en términos de éxito reproductivo. El éxito reproductivo parece depender del tamaño corporal, la distribución de energía hacia procesos básicos y el riesgo basal de cáncer. La selección natural favorece mecanismos efectivos, que protejan contra el cáncer siempre que permitan una optimización de otros rasgos que determinen el éxito adaptativo. Las conclusiones derivadas de estos principios ecológicos y evolutivos, deben servir para una mejor caracterización de los factores dependientes tanto de los factores biológicos como de los ambientales que influyen en el riesgo de la carcinogénesis. Más del 90 % del incremento del riesgo basal de cáncer, incluso en especies naturales, obedecen a la actividad humana, y por tanto, pueden ser modificables. 

Descargas

Los datos de descargas todavía no están disponibles.

Citas

1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, ParkinDM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):359-86. Access. 12/09/2017. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25220842

2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. Ca Cancer J Clin. 2011 Aprl;61:69-90.

3. Torre LA, Siegel RL,Ward EM, and Jemal A. Global Cancer Incidence and Mortality Rates and Trends-An Update. Cancer Epidemiol Biomarkers Prev. 2016;25(1):14-35.

4. Siegel R, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin 2017;67(1):7-30.

5. Ministerio de Salud Pública. Anuario Estadístico de Salud 2016. Habana: Dirección de Registros Médicos y Estadísticas de Salud; 2017.

6. Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012 Jan 18; 481(7381):306-13.

7. Rozhok A, DeGregori J. Toward an evolutionary model of cancer: Considering the mechanisms that govern the fate of somatic mutations. PNAS. July 21, 2015;112(29):8914-21.

8. Crespi B, Summers K: Evolutionary biology of cancer. Trends Ecol Evol. 2005;20(10):545-52.

9. Aktipis CA, Nesse RM. Evolutionary foundations for cancer biology. Evol Appl. 2014.

10. Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012 Jan 18;481(7381):306-13.

11. Ujvari B, Beckmann C, Biro PA, Arnal A, Tasiemski A, Massol F, et at. Cancer and life-history traits: lessons from host-parasite interactions. Parasitology. 2016(143):533-41.

12. Wu C, Wang HY, Ling S, Lu X. The ecology and evolution of cancer: The ultra-microevolutionary process. Annu Rev Genet 2016 Nov 23;50:347-69.

13. Crespi B, Summers K: Evolutionary biology of cancer. Trends Ecol Evol. 2005;20(10):545-52.

14. Merlo LM, Pepper JW, Reid BJ, Maley CC: Cancer as an evolutionary and ecological process. Nat Rev Cancer. 2006;6(12):924-35.

15. DeGregori J: Evolved tumor suppression: why are we so good at not getting cancer? Cancer Res. 2011; 71(11):3739-44.

16. Roche B, Hochberg ME, Caulin AF, Maley CC, Gatenby RA, Missé D, Thomas F. Natural resistance to cancers: a Darwinian hypothesis to explain Peto's paradox. BMC Cancer. 2012;12(445):387-96.

17. Bissell MJ, Hines WC: Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med. 2011; 17(3):320-29.

18. Graves M. Evolutionary determinants of cancer. Cancer Discov. 2015 Aug;5(8):806-20.

19. Petkova R, Chakarov S. The final checkpoint. Cancer as an adaptive evolutionary mechanism. Med Biotec. 2015 Dec;30(3):434-42.

20. Ewald PW, Swain Ewald HA. Infection, mutation, and cancer evolution. Jour Molec Med. 2912;90:535-41.

21. Robert J. Comparative study of tumorigenesis and tumor immunity in invertebrates and nonmammalian vertebrates. Dev Comp Immunol. 2010;34(9):915-25.

22. Aktipis CA, Boddy AM, Jansen G, Hibner U, Hochberg ME, Maley CC, Wilkinson GS. Cancer across the tree of life: cooperation and cheating in multicellularity. Phil Trans R Soc B. 2015;370:2014-19. Access: 12/09/2017. Available from: http://dx.doi.org/10.1098/rstb.2014.0219

23. Domazet-Loso T, Klimovich A, Anokhin B, Anton-Erxleben F, Hamm MJ, Lange C, Bosch TCG. Naturally occurring tumours in the basal metazoan Hydra. Nature Communications. 2014;5:1-8.

24. Metzger MJ, Reinisch C, Sherry J, Goff SP. Horizontal transmission of clonal cancer cells causes leukemia in softshell clams. Cell. 2015;161:255-63.

25. Shimonohara N, Holland CH, Lin TL, Wigle WL. Naturally occurring neoplasms in pigeons in a research colony: a retrospective study. Avian Diseases. 2012;57:133-39. Access: 12/09/2017. Available from: http://dx.doi.org/10.1637/10244-051012-Case

26. Vickers TW, Clifford DL, Garcelon DK, King JL, Duncan CL, Gaffney PM, Boyce WM. Pathology and epidemiology of ceruminous gland tumors among endangered Santa Catalina Island foxes (Urocyon littoralis catalinae) in the Channel Islands, USA. PLoS ONE. 2015;10(6):304-22.

27. Vittecoq M, Ducasse H, Arnal A, Møller AP, Ujvari B, Jacqueline CB, et al. Animal behaviour and cancer. Animal Behaviour. 2015;101:19-26.

28. Boyce WM. Ear mite removal in the Santa Catalina Island Fox (Urocyon littoralis catalinae): controlling risk factors for cancer development. PLoS ONE. 2015;10(14):144-71.

29. Hall AJ. Common cancer in a wild animal: the California sea lion (Zalophus californianus) as an emerging model for carcinogenesis. Philosophical Transactions of the Royal Society B. 2015;370(81):201-28.

30. Peto R, Roe FJC, Lee PN, Levy L, Clack J. Cancer and Aging in Mice and Men. Brit J Cancer. 1975;32:411-26.

31. Caulin AF, Graham TA, Wang L-S, Maley CC. Solutions to Peto's paradox revealed by mathematical modelling and cross-species cancer gene analysis. Phil Trans R Soc B 2015;370(28):201-22.

32. Nunney L, Muir B. Peto's paradox and the hallmarks of cancer: constructing an evolutionary framework for understanding the incidence of cancer. Phil Trans R Soc B. 2015;370(1673):201-11. Access: 12/09/2017. Available from: http://dx.doi.org/10.1098/rstb.2015.0161

33. Caulin AF, Maley CC. Peto's Paradox: Evolution's Prescription for Cancer Prevention. Trends Ecol Evol. 2011 April;26(4):175-82.

34. Ducasse H, Ujvari B, Solary E, Vittecoq M, Arnal A, Bernex F, et al. Can Peto's paradox be used as the null hypothesis to identify the role of evolution in natural resistance to cancer? A critical review. BMC Cancer. 2015;5(991):792-817.

35. Duesberg P, Mandrioli D, McCormack A, Nicholson JM. Is carcinogenesis a form of speciation? Cell Cycle. 2011;10:2100-114.

36. Kokko H, Hochberg ME. Towards cancer-aware life-history modelling. Phil Trans R Soc B. 2015;370(56):201-34.

37. Jackeline CB, Biro LA, Beckmman C, Moller AP, Renaud F, Sorci G, et al. Cancer: A disease at the crossroads of trade-offs. Evol Appl. 2017;10(3):215-25.

38. Vittecoq M, Roche B, Daoust SP, Ducasse H, Missé D, Abadie J, et al. Cancer: a missing link in ecosystem functioning? Trends Ecol Evol. 2013;28:628-35.

39. Boddy AM, Kokko H, Breden F, Wilkinson GS, Aktipis CA. Cancer susceptibility and reproductive trade-offs: a model of the evolution of cancer defences. Phil Trans R Soc B. 2015;370(86):230-31.

40. Crean AJ, Dwyer JM, Marshall DJ. Adaptive paternal effects? Experimental evidence that the paternal environment affects offspring performance. Ecology. 2013;(94):2575-82.

41. Thomas F, Fisher D, Fort P, Marie JP, Daoust S, Roche B, et al. Applying ecological and evolutionary theory to cancer: a long and winding road. Evol. Appl. 2013;6(1):1-10.

42. Miller WB, Torday JS. A systematic approach to cancer: evolution beyond selection. Clin and Transl Med, 2017;6(2):[aprox 77 scr. ]. Access: 12/09/2017. Available from: https://clintransmed.springeropen.com/articles/10.1186/s40169-016-0131-4

43. Tomassetti C, Vogelstein B. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science. 2015 January 2;347(6217):78-81.

44. Tomasetti C, Li L, Vogelstein B. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science. 2017 March;355:1330-34.

45. Noble RJ, Hochberg ME. A framework for how environment contributes to cancer risk. Ecology Letters. 2017 Feb;20(2):117-34.

Descargas

Publicado

07.01.2019

Cómo citar

1.
Pérez Cala AE, Benítez Sánchez E, Dominica Esteris Y de la C. Consideraciones teóricas sobre la perspectiva ecológica-evolutiva del cáncer. Rev Cubana Med Milit [Internet]. 7 de enero de 2019 [citado 9 de enero de 2025];48(1):112-26. Disponible en: https://revmedmilitar.sld.cu/index.php/mil/article/view/162

Número

Sección

Artículo de Revisión

Artículos más leídos del mismo autor/a