Aproximación inicial al factor de crecimiento epidérmico en la infección por SARS-CoV-2

Héctor José Pérez Hernández

Texto completo:

HTML (English) PDF (English)

Resumen

Introducción: El receptor de factor de crecimiento epidérmico (EGF) juega un rol crítico en la inflamación pulmonar. Son escasos los datos referentes a los niveles séricos de su ligando principal.
Objetivos: Describir el comportamiento de los niveles séricos del EGF y evaluar su posible repercusión en el contexto de pacientes hospitalizados por COVID-19.
Métodos: Estudio exploratorio controlado, con muestreo por cuotas, en pacientes con COVID-19, ingresados en el Hospital "Saturnino Lora" y 23 sujetos aparentemente sanos, donantes activos del Banco de Sangre Renato "Guitar Rosell". Para las determinaciones de EGF se empleó el kit comercial UMELISA EGF del Centro de Inmunoensayo de Cuba. Se utilizaron medidas de resumen: frecuencia absoluta, porcentaje y media aritmética. La significación estadística de las diferencias observables entre grupos se exploró con la prueba de jicuadrado de Pearson, o la prueba t de Welch con α= 0,05.
Resultados: De 46 sujetos inscritos en el estudio, 50 % fueron positivos para el SARS-CoV-2 mediante RT-PCR. Entre los casos de COVID-19 y los controles, se observaron diferencias generales respecto al EGF (g= 1,4465; p= 0,0000*), con similar comportamiento en el sexo y la edad. En cuanto a la gravedad de la enfermedad, se observaron diferencias ligeras (g= 0,2152), tendencia que se acentuó en el sexo masculino (g= 1,1677) y las femenino (g= 0,7533), este último comparativamente menor.
Conclusiones: Determinar EGF sérico en pacientes infectados por SARS-CoV-2, pudiera tener un valor predictivo de la gravedad en pacientes con la COVID-19.

Palabras clave

COVID-19; factor de crecimiento epidérmico; inflamación; marcadores séricos.

Referencias

Morty RE, Ziebuhr J. Call for Papers: The Pathophysiology of COVID-19 and SARS-CoV-2 Infection [Internet]. American Journal of Physiology. Lung Cellular and Molecular Physiology. 2020;318(5): L1016-L1019. DOI: 10.1152/ajplung.00136.2020

Rabaan AA, Al-Ahmed SH, Haque S, Sah R, Tiwari R, Malik YS, et al. SARS-CoV-2, SARS-CoV, and MERS-COV: A comparative overview. [Internet]. Le infections in medicine. 2020;28(2):174-84. Available at: https://pubmed.ncbi.nlm.nih.gov/32275259/

Kakodkar P, Kaka N, Baig MN. A Comprehensive Literature Review on the Clinical Presentation, and Management of the Pandemic Coronavirus Disease 2019 (COVID-19). [Internet]. Cureus. 2020;12(4):e7560. DOI: 10.7759/cureus.7560

Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. [Internet]. J Med Virol. 2020;92: 418-23. DOI: 10.1002/jmv.25681

Gomes SMR, Brito ACdS, Manfro WFP, Ribeiro-Alves M, Ribeiro RSdA, da Cal MS, et al. High levels of pro-inflammatory SARS-CoV2-specific biomarkers revealed by in vitro whole blood cytokine release assay (CRA) in recovered and long-term COVID-19 patients. [Internet]. PLoS ONE. 2023; 18(4): e0283983. DOI: 10.1371/journal.put.0283983

Matsuyama T, Kubli SP, Yoshinaga SK, Pfeffe, K, Mak TW. An aberrant STAT pathway is central to COVID-19. [Internet]. Cell death and differentiation.2020;27 (12):3209-3225. DOI: 10.1038/s41418-020-00633-7

Purcaru OS, Artene SA, Barcan E, Silosi CA, Stanciu I, Danoiu S, et al. The Interference between SARS-CoV-2 and Tyrosine Kinase Receptor Signaling in Cancer. [Internet]. Int. J. Mol. Sci. 2021; 22: 4830. DOI:10.3390/ijms22094830

de Almeida SMV, Santos Soares JC, Dos Santos KL, Alves JEF, Ribeiro AG, Jacob ÍTT, et al. COVID-19 therapy: What weapons do we bring into battle? [Internet]. Bioorganic & medicinal chemistry.2020; 28(23):115757. DOI: 10.1016/j.bmc.2020.115757

Shen Q, Li J, Zhang Z, Guo S, Wan Q, An X, et al. COVID-19: systemic pathology and its implications for therapy. [Internet]. International journal of biological sciences .2022; 18(1):386-408. DOI: 10.7150/ijbs.65911

London HD, Armada JJ, Martínez AH, Abdo Cuza AA, Sánchez YH, Rodríguez AG, et al. Blocking EGFR with nimotuzumab: a novel strategy for COVID-19 treatment. [Internet]. Immunotherapy. 2022; 14(7):521-30. DOI: 10.2217/imt-2022-0027

Saavedra D, Añé-Kourí AL, Gregorich EML, Mena J, Lorenzo-Luaces P, London HD, et al. Immune, inflammatory and prothrombotic parameters in COVID-19 patients treated with an anti EGFR antibody. [Internet]. Immunol Lett. 2022; 251-252:1-8. DOI: 10.1016/j.imlet.2022.09.005

Castells Martínez EM, del Valle R, González EC, Melchor A, Pérez PL, González I, et al. An enzyme immunoassay for determining epidermal growth factor (EGF) in human serum samples using an ultramicroanalytical system. [Internet]. J Immunoassay Immunochem. 2017; 38(2):190-201. DOI: 10.1080/15321819.2016.1236729

Crombet Ramos T, Santos Morales O, Dy GK, León Monzón K, Lage Dávila A. The Position of EGF Deprivation in the Management of Advanced Non-Small Cell Lung Cancer. Frontiers in Oncology. 2021; 11:639745. DOI: 10.3389/fonc.2021.639745

Ministry of Public Health. National Action Protocol for Covid-19. Version 1.7. Havana: Minsap; 2021.

Ministry of Public Health. Regulation D 03-21 Good Clinical Laboratory Practices. Havana: Center for State Control of Medicines, Medical Equipment and Devices (CECMED); 2021. [access: 22/04/2021]. Available at: https://www.cecmed.cu/sites/default/files/adjuntos/Regla-mentacion/ResRegBPLC%20firmada.pdf

World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013; 310(20):2191-4. DOI: 10.1001/jama.2013.281053

International Council for Harmonization (ICH). ICH-E6 Good Clinical Practice (GCP). ICH; 2021. [access: 22/04/2021]. Available at: https://database.ich.org/sites/default/files/ICH_E6-R3_GCP-Principles_Draft_2021_0419.pdf

Abbas AK, Lichtman AH, Pillai S. Cellular and Molecular Immunology. 10aed. Madrid: Elsevier; 2021. [access: 22/04/2021]. Available at: https://archive.org/details/cellular-and-molecular-immunology-10th-edition/page/n1/mode/2up

Sohn KM, Lee SG, Kim HJ, Cheon S, Jeong H, Lee J, et al. COVID-19 patients upregulate toll-like receptor 4-mediated inflammatory signaling that mimics bacterial sepsis. [Internet]. J Korean Med Sci. 2020 [access: 12/04/2024]; 35(38):e343. https://pubmed.ncbi.nlm.nih.gov/32989935/

Cortese M, Lee JY, Cerikan B, Neufeldt CJ, Oorschot VMJ, Köhrer S, et al. Integrative imaging reveals SARS-CoV-2-induced reshaping of subcellular morphologies. [Internet]. Cell Host Microbe. 2020; 28(6):853-66. DOI: 10.1016/j.chom.2020.11.003

Zanza C, Romenskaya T, Manetti AC, Franceschi F, La Russa R, Bertozzi G, et al. Cytokine storm in COVID-19: Immunopathogenesis and therapy. [Internet]. Medicine (Kaunas). 2022 [access: 12/04/2024]; 58(2):144. Available at: https://pubmed.ncbi.nlm.nih.gov/35208467

Monserrat J, Gómez-Lahoz A, Ortega M, Sanz J, Muñoz B, Arévalo-Serrano J, et al. Role of innate and adaptive cytokines in the survival of COVID-19 patients. [Internet]. Int J Mol Sci. 2022 [access: 12/04/2024]; 23(18):10344. Available at: https://pubmed.ncbi.nlm.nih.gov/36142255

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. [Internet]. Lancet. 2020 [access: 12/04/2024]; 395(10223):497-506. Available at: https://pubmed.ncbi.nlm.nih.gov/31986264

Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. [Internet]. Lancet. 2020 [access: 12/04/2024]; 395(10229):1033-4. Available at: https://pubmed.ncbi.nlm.nih.gov/32192578

Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. [Internet]. Nature. 2020 [access: 12/04/2024]; 579(7798):270-3. Available at: https://pubmed.ncbi.nlm.nih.gov/32015507

Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. [Internet]. Cell. 2020 [access: 12/04/2024]; 181(2):271-280.e8. Available at: https://pubmed.ncbi.nlm.nih.gov/32142651

Karki R, Kanneganti TD. Innate immunity, cytokine storm, and inflammatory cell death in COVID-19. [Internet]. J Transl Med. 2022; 20(1): 542. DOI: 10.1186/s12967-022-03767-z

Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. [Internet]. Nat Commun. 2020; 11(1):1620. DOI: 10.1038/s41467-020-15562-9

Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, et al. Cell entry mechanisms of SARS-CoV-2. [Internet]. Proc Natl Acad Sci US A. 2020 [access: 12/04/2024]; 117(21):11727-34. Available at: https://pubmed.ncbi.nlm.nih.gov/32376634

Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. [Internet]. Nat Rev Microbiol. 2021; 19(3):141-54. DOI: 10.1038/s41579-020-00459-7

Qian YR, Guo YI, Wan HY, Fan L, Feng Y, Ni L, et al. Angiotensin-converting enzyme 2 attenuates the metastasis of non-small cell lung cancer through inhibition of epithelial-mesenchymal transition. [Internet]. Oncol Rep. 2013 [access: 12/04/2024]; 29(6):2408-14. Available at: https://pubmed.ncbi.nlm.nih.gov/23545945

Zhong J, Li L, Wang Z, Bai H, Gai F, Duan J, et al. Potential resistance mechanisms revealed by targeted sequencing from lung adenocarcinoma patients with primary resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs). [Internet]. J Thorac Oncol. 2017 [access: 12/04/2024]; 12(12):1766-78. Available at: https://pubmed.ncbi.nlm.nih.gov/28818608

Deben C, Le Compte M, Siozopoulou V, Lambrechts H, Hermans C, Lau HW, et al. Expression of SARS-CoV-2-related surface proteins in non-small-cell lung cancer patients and the influence of standard of care therapy. [Internet]. Cancers (Basel). 2022 [access: 12/04/2024]; 14(17):4074. Available at: https://pubmed.ncbi.nlm.nih.gov/36077610

Engler M, Albers D, Von Maltitz P, Groß R, Münch J, Cirstea IC. ACE2-EGFR-MAPK signaling contributes to SARS-CoV-2 infection. [Internet]. Life Sci Alliance. 2023 [access: 12/04/2024]; 6(9):e202201880. Available at: https://pubmed.ncbi.nlm.nih.gov/37402592

Yoo J, Perez CER, Nie W, Edwards RA, Sinnett-Smith J, Rozengurt E. TNF- α induces upregulation of EGFR expression and signaling in human colonic myofibroblasts. [Internet]. Am J Physiol Gastrointest Liver Physiol. 2012 [access: 12/04/2024]; 302(8):G805-14. Available at: https://pubmed.ncbi.nlm.nih.gov/22301110

Yoo J, Rodriguez Perez CE, Nie W, Sinnett-Smith J, Rozengurt E. TNF- α and LPA promote synergistic expression of COX-2 in human colonic myofibroblasts: role of LPA-mediated transactivation of upregulated EGFR. [Internet]. BMC Gastroenterol. 2013 [access: 12/04/2024]; 13(1):90. DOI: 10.1186/1471-230X-13-90

Chen J, Chen JK, Nagai K, Plieth D, Tan M, Lee TC, et al. EGFR signaling promotes TGF β -dependent renal fibrosis. [Internet]. J Am Soc Nephrol. 2012 [access: 12/04/2024]; 23(2):215-24. Available at: https://pubmed.ncbi.nlm.nih.gov/22095949

Zhuang S, Liu N. EGFR signaling in renal fibrosis. [Internet]. Kidney Int Suppl. 2014 [access: 12/04/2024]; 4(1):70-4. Available at: https://pubmed.ncbi.nlm.nih.gov/26312153

Single cell type - EGFR - The Human Protein Atlas. Proteinatlas.org. [access: 12/04/2024]. Available at: https://www.proteinatlas.org/ENSG00000146648-EGFR/single+cell+type

Single cell type - ACE2 - The Human Protein Atlas: single cell type. Proteinatlas.org. [access: 12/04/2024]. https://www.proteinatlas.org/ENSG00000130234-ACE2/single+cell+type

Kjær IM, Olsen DA, Alnor A, Brandslund I, Bechmann T, Madsen JS. EGFR and EGFR ligands in serum in healthy women; reference intervals and age dependency. [Internet]. Clin Chem Lab Med. 2019; 57(12):1948-55. DOI: 10.1515/ccLM-2019-0376

Meybosch S, De Monie A, Anné C, Bruyndonckx L, Jürgens A, De Winter BY, et al. Epidermal growth factor and its influencing variables in healthy children and adults. [Internet]. PLoS One. 2019 [access: 12/04/2024]; 14(1):e0211212. Available at: https://pubmed.ncbi.nlm.nih.gov/30677083

Blair P, Flaumenhaft R. Platelet α -granules: Basic biology and clinical correlates. [Internet]. Blood Rev. 2009 [access: 12/04/2024];23(4):177-89. Available at: https://pubmed.ncbi.nlm.nih.gov/19450911

Kardas G, Daszyńska-Kardas A, Marynowski M, Brząkalska O, Kuna P, Panek M. Role of platelet-derived growth factor (PDGF) in asthma as an immunoregulatory factor mediating airway remodeling and possible pharmacological target. [Internet]. Front Pharmacol. 2020 [access: 12/04/2024]; 14(11):47. Available at: https://pubmed.ncbi.nlm.nih.gov/32116722

Chaudhary PK, Kim S, Kim S. Shedding light on the cell biology of platelet-derived extracellular vesicles and their biomedical applications. [Internet]. Life (Basel). 2023 [access: 12/04/2024]; 13(6):1403. Available at: https://pubmed.ncbi.nlm.nih.gov/37374185

González Pérez I, Cáceres Lavernia HH, Carr Pérez A, León Monzón K. Measurement of Serum EGF Levels, a Methodological Approach: Learning What Means Low-/High-Concentration of EGF In Serum". Some Clinical Implications. [Internet]. J Mol Biomark Diagn. 2017; 8(335):2. DOI: 10.4172/2155-9929.1000335

Enlaces refback

  • No hay ningún enlace refback.


URL de la licencia: https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es