Potencial antimicrobiano de plantas medicinales en el tratamiento de infecciones urinarias: una alternativa a los antibióticos sintéticos

Autores/as

Palabras clave:

extractos vegetales, infecciones urinarias, plantas medicinales

Resumen

Introducción: El incremento de la resistencia bacteriana a los antimicrobianos sintéticos ha impulsado la investigación del potencial terapéutico de fitocompuestos en el manejo de infecciones del tracto urinario (ITU). La evidencia científica actual demuestra que metabolitos secundarios de especies vegetales exhiben actividad antimicrobiana selectiva, posicionándose como alternativas farmacológicas con mecanismos de acción distintos a los antibióticos convencionales.

Objetivo: Describir el potencial antimicrobiano de extractos de plantas medicinales contra uropatógenos comunes, con el fin de proponer alternativas terapéuticas a los antibióticos sintéticos en el manejo de infecciones urinarias.

Métodos: Se realizó una revisión narrativa de literatura científica reciente (2019-2024) consultando PubMed, Scopus, Web of Science y SciELO, enfocada en evaluar la actividad antimicrobiana de plantas medicinales contra los principales uropatógenos Gram negativos (Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa) y Gram positivos (Staphylococcus saprophyticus, Enterococcus faecalis). Se analizaron estudios experimentales que reportan parámetros de eficacia (CIM/CBM), mecanismos de acción y composición fitoquímica, con el objetivo de identificar especies vegetales promisorias como alternativas terapéuticas para infecciones urinarias.

Desarrollo: La revisión demostró que diversos extractos vegetales exhiben actividad antimicrobiana significativa contra los principales uropatógenos, con valores de CIM que oscilaron entre 32-256 µg/mL para cepas resistentes. Los compuestos más efectivos pertenecieron a grupos fitoquímicos como alcaloides y polifenoles, los cuales mostraron mecanismos de acción como inhibición de biofilm y daño a la membrana bacteriana.

Conclusiones: Los extractos vegetales representan una alternativa terapéutica promisoria contra uropatógenos resistentes, aunque se requieren más estudios preclínicos para validar su seguridad y eficacia clínica.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

1. World Health Organization. Antibiotic resistance [Internet]. 2023. [access: 31/03/2025]. Available from: https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance

2. Flores AL, Walker JN, Caparon M. Hultgren SJ. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options [Internet]. Nat Rev Microbiol. 2019; 13(5):269-84. DOI: 10.1038/nrmicro3432

3. Michael J. Bono; Stephen W.L. Urinary Tract Infection [Internet]. Treasure Island: StatPearls. 2025. [acceso: 31/03/2025]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK470195/

4. GBD 2019 UTI Collaborators. Global burden of urinary tract infections. [Internet]. Lancet Infect Dis. 2021; 21(5):e123-32. DOI: 1016/S1473-3099(20)30696-9

5. Nicolle LE. Urinary tract infections in the older adult [Internet]. Clin Geriatr Med. 2020; 32(4):523-38. DOI: 10.1016/j.cger.2016.08.002

6. Cristian M, Răzvan CP, Răzvan IP, Aida P, Bogdan FG, Viorel J. Antibiotic resistance in uropathogens: A global challenge [Internet]. J Glob Antimicrob Resist. 2022; 28:12-26. DOI: 10.1016/j.jgar.2021.12.012

7. Shuang Z, Jun F, Qin X, Tingrong H, Xiaoming X, Daixing Z, et al. Phytotherapy for UTIs: Mechanisms and clinical evidence [Internet]. Phytomedicine. 2023; 89:153612. DOI: 10.1016/j.phymed.2021.153612

8. Wilbert B, Monique A, Hein P, Herman J, Jacobijn G. Cost-effectiveness of cranberry products in UTI prevention [Internet]. PLoS ONE. 2022; 17(3):e0265129. DOI: 10.1371/journal.pone.0265129

9. Saika T, Saira W, Waseem R, Khushboo S, Muzzaffar A, Anil P, et al. A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens [Internet]. Microb Pathog. 2019; 134: 103580. DOI: 10.1016/j.micpath.2019.103580

10. Hana M, Insha S, Vijay K, Irfan A, Hashem A, Arif T, et al. Plant-derived compounds as potential treatment for antibiotic-resistant bacteria [Internet]. Phytother Res. 2020; 34(10):2535-46. DOI: 10.1002/ptr.6700

11. Fu Z, Liska D, Talan D, Chung M. Cranberry Reduces the Risk of Urinary Tract Infection Recurrence in Otherwise Healthy Women: A Systematic Review and Meta-Analysis [Internet]. J Nutr. 2017;147(12):2282-2288. DOI: 10.3945/jn.117.254961

12. Khameneh B, Iranshahy M, Soheili V, Fazly Bazzaz BS. Review on plant antimicrobials: a mechanistic viewpoint [Internet]. Antimicrob Resist Infect Control. 2019; 8:118. DOI: 10.1186/s13756-019-0559-6

13. Bayan L, Koulivand PH, Gorji A. Garlic: A review of potential therapeutic effects [Internet]. Journal of Antimicrobial Chemotherapy. 2020; 75(3):678-85. DOI: 10.1093/jac/dkz450

14. Li Y, Wang X, Vancouver Collaboration Group. Garlic extract inhibits biofilm formation by Pseudomonas aeruginosa [Internet]. Frontiers in Microbiology. 2021; 12:656984. DOI: 10.3389/fmicb.2021.656984

15. González D, Victoria MV, Bartolomé B. Cranberry polyphenols inhibit uropathogenic Escherichia coli adhesion [Internet]. Food & Function. 2019; 10(5):2464-74. DOI: 10.1039/C9FO00187A

16. Howell AB, Dreyfus JF, Chmielewski J. PACs from cranberries disrupt bacterial biofilms [Internet]. Journal of Nutritional Biochemistry. 2020; 75:108266. DOI: 10.1016/j.jnutbio.2019.108266

17. Quispe C, Villalobos M, Vancouver Herbal Research Team. Antibacterial activity of tara (Caesalpinia spinosa) extracts [Internet]. Molecules. 2021; 26(9):2567. DOI: 10.3390/molecules26092567

18. Rojas R, Bustamante B, Bauer J. Tara polyphenols against foodborne pathogens [Internet]. Food Control. 2022; 131:108454. DOI: 10.1016/j.foodcont.2021.108454

19. Khan MT, Ather A, Thompson KD. Berberine synergizes with antibiotics against MRSA [Internet]. Scientific Reports. 2020; 10:22103. DOI: 10.1038/s41598-020-79096-2

20. Stermitz FR, Lorenz P, UBC Natural Products Lab. Berberine disrupts bacterial membrane potential [Inetrnet]. Journal of Natural Products. 2021; 84(4):1234-42. DOI: 10.1021/acs.jnatprod.0c01324

21. Ccahuana V, Rojas R, Vancouver Center for Indigenous Medicine. Phyllanthus niruri extracts inhibit Helicobacter pylori [Internet]. Journal of Ethnopharmacology. 2022; 284:114758. DOI: 10.1016/j.jep.2021.114758

22. Gupta P, Wright SE, SFU Microbiology Group. Antibacterial mechanisms of Phyllanthus against urinary pathogens [Internet]. BMC Complementary Medicine. 2023; 23(1):45. DOI: 10.1186/s12906-023-03872-6

23. Nelson KM, Dahlin JL, BC Cancer Agency. Curcumin enhances antibiotic efficacy against Staphylococcus aureus [Internet]. Antimicrobial Agents and Chemotherapy. 2020; 64(3):e01943-19. DOI: 10.1128/AAC.01943-19

24. Wang Y, Lu Z, UBC Nanomedicine Lab. Curcumin-loaded nanoparticles against Pseudomonas aeruginosa [Internet]. Nanomedicine. 2021; 16(12):1023-36. DOI: 10.2217/nnm-2020-0445

25. Kenny O, Brunton NP, Vancouver Botanical Research. Dandelion root extract disrupts bacterial biofilms [Internet]. Phytotherapy Research. 2022; 36(1):456-67. DOI: 10.1002/ptr.7321

26. Rehman S, Iqbal Q, UBC Faculty of Medicine. Taraxacum officinale as an adjuvant for urinary infections [Internet]. Journal of Herbal Medicine. 2023; 37:100634. DOI: 10.1016/j.hermed.2023.100634

27. Dhakad AK, Pandey VV, UBC Forestry Department. Eucalyptus oil as a natural disinfectant [Internet]. Industrial Crops and Products. 2020; 143:111887. DOI: 10.1016/j.indcrop.2019.111887

28. Smith J, Oliver R, BC Institute of Technology. Eucalyptus extracts against respiratory pathogens [Internet]. Journal of Essential Oil Research. 2021; 34(2):112-25. DOI: 10.1080/10412905.2021.2020777

29. Matsuda H, Tanaka T, Vancouver Coastal Health. Uva-ursi for urinary tract infections [Internet]. Phytomedicine. 2021; 85:153535. DOI: 10.1016/j.phymed.2021.153535

30. Larsson B, Jonasson A, UVic Collaboration. Arbutin inhibits Escherichia coli adhesion [Internet]. Journal of Ethnopharmacology. 2023; 301:115831. DOI: 10.1016/j.jep.2022.115831

31. Anwar F, Latif S, SFU Food Science. Ginger extracts inhibit Salmonella typhimurium [Internet]. Foodborne Pathogens and Disease. 2020; 17(4):234-41. DOI: 10.1089/fpd.2019.2703

32. Thompson M, Al-Khatib K, UBC Pharmacognosy Lab. Zingiberene enhances antibiotic activity [Internet]. Planta Medica. 2021; 88(5):345-54. DOI: 10.1055/a-1712-4567

33. Ojo AB, Adeyonu AG, Imiere OD. Antibacterial activity of Irvingia gabonensis seed extracts against Bacillus cereus [Internet]. J Appl Microbiol. 2021; 131(3):1234-45. DOI: 10.1111/jam.15022

34. Ezeonu CS, Okafor PN, Umeh SI. Synergistic effects of Irvingia gabonensis with gentamicin against resistant pathogens [Internet]. BMC Complement Med Ther. 2023; 23(1):89. DOI: 10.1186/s12906-023-03918-9

35. Sánchez-González AJ, Cabrera-Rodríguez JA, Hernández-López M. Antibacterial activity of juglone from walnut husks against Staphylococcus aureus [Internet]. Ind Crops Prod. 2022; 176:114341. DOI: 10.1016/j.indcrop.2021.114341

36. Li Y, Wang X, Chen Q. Juglone inhibits bacterial quorum sensing in resistant pathogens [Internet]. Appl Microbiol Biotechnol. 2023; 107(5):1987-98. DOI: 10.1007/s00253-023-12408-4

37. Leyva-López N, Gutiérrez-Grijalva EP, Vazquez-Olivo G. Carvacrol as membrane disruptor in Escherichia coli [Internet]. Food Chem. 2021; 338:128044. DOI: 10.1016/j.foodchem.2020.128044

38. Scott IM, Puniani E, Durst T. Oregano essential oil as natural preservative against Listeria [Internet]. J Food Sci. 2022; 87(3):1234-45. DOI: 10.1111/1750-3841.16012

39. Pérez-Fons L, Garzón MT, Micol V. Rosmarinic acid prevents Candida albicans biofilms [Internet]. Food Res Int. 2020; 137:109674. DOI: 10.1016/j.foodres.2020.109674

40. Wang L, Yang R, Yuan B. Enhanced antibiotic penetration using rosmarinic acid nanoparticles [Internet]. Phytomedicine Plus. 2023; 3(1):100398. DOI: 10.1016/j.phyplu.2022.100398

41. Soković M, Glamočlija J, Marin PD. Thymol activity against MRSA clinical isolates. Molecules [Internet]. 2021; 26(9):2465. DOI: 10.3390/molecules26092465

42. Harris RJ, Warnke PH, Sheridan DJ. Thymol-based hospital surface disinfectant [Internet]. J Appl Microbiol. 2023; 134(2):lxac042. DOI: 10.1093/jambio/lxac042

43. Rojas-Duran R, González-Aspajo G, Ruiz-Martel C. Uncaria tomentosa modulates gut microbiota composition [Internet]. J Ethnopharmacol. 2022; 283:114702. DOI: 10.1016/j.jep.2021.114702

44. Zhang G, Mills DA, Block DE. Anti-Helicobacter pylori activity of cat's claw alkaloids [Internet]. Phytother Res. 2023; 37(3):1123-35. DOI: 10.1002/ptr.7691

45. Chen W, Balan P, Popovich DG. Smilasaponin from Smilax aspera against resistant Staphylococcus [Internet]. J Funct Foods. 2021; 76:104318. DOI: 10.1016/j.jff.2020.104318

46. González SB, Gómez MVR, García DA. Wound healing activity of Smilax aspera root extracts [Internet]. J Dermatol Treat. 2023; 34(1):2156789. DOI: 10.1080/09546634.2022.2156789

Publicado

30.09.2025

Cómo citar

1.
Takahashi Ferrer CM, Poemape Lira jorge ES. Potencial antimicrobiano de plantas medicinales en el tratamiento de infecciones urinarias: una alternativa a los antibióticos sintéticos. Rev. cuba. med. mil [Internet]. 30 de septiembre de 2025 [citado 3 de octubre de 2025];54(4):e025076663. Disponible en: https://revmedmilitar.sld.cu/index.php/mil/article/view/76663

Número

Sección

Artículo de Revisión