Aproximación inicial al factor de crecimiento epidérmico en la infección por SARS-CoV-2
Palabras clave:
COVID-19, factor de crecimiento epidérmico, inflamación, marcadores séricos.Resumen
Introducción: El receptor de factor de crecimiento epidérmico (EGF) juega un rol crítico en la inflamación pulmonar. Son escasos los datos referentes a los niveles séricos de su ligando principal.Objetivos: Describir el comportamiento de los niveles séricos del EGF y evaluar su posible repercusión en el contexto de pacientes hospitalizados por COVID-19.
Métodos: Estudio exploratorio controlado, con muestreo por cuotas, en pacientes con COVID-19, ingresados en el Hospital "Saturnino Lora" y 23 sujetos aparentemente sanos, donantes activos del Banco de Sangre Renato "Guitar Rosell". Para las determinaciones de EGF se empleó el kit comercial UMELISA EGF del Centro de Inmunoensayo de Cuba. Se utilizaron medidas de resumen: frecuencia absoluta, porcentaje y media aritmética. La significación estadística de las diferencias observables entre grupos se exploró con la prueba de jicuadrado de Pearson, o la prueba t de Welch con α= 0,05.
Resultados: De 46 sujetos inscritos en el estudio, 50 % fueron positivos para el SARS-CoV-2 mediante RT-PCR. Entre los casos de COVID-19 y los controles, se observaron diferencias generales respecto al EGF (g= 1,4465; p= 0,0000*), con similar comportamiento en el sexo y la edad. En cuanto a la gravedad de la enfermedad, se observaron diferencias ligeras (g= 0,2152), tendencia que se acentuó en el sexo masculino (g= 1,1677) y las femenino (g= 0,7533), este último comparativamente menor.
Conclusiones: Determinar EGF sérico en pacientes infectados por SARS-CoV-2, pudiera tener un valor predictivo de la gravedad en pacientes con la COVID-19.
Descargas
Los datos de descargas todavía no están disponibles.
Citas
1. Morty RE, Ziebuhr J. Call for Papers: The Pathophysiology of COVID-19 and SARS-CoV-2 Infection [Internet]. American Journal of Physiology. Lung Cellular and Molecular Physiology. 2020;318(5): L1016-L1019. DOI: 10.1152/ajplung.00136.2020
2. Rabaan AA, Al-Ahmed SH, Haque S, Sah R, Tiwari R, Malik YS, et al. SARS-CoV-2, SARS-CoV, and MERS-COV: A comparative overview. [Internet]. Le infections in medicine. 2020;28(2):174-84. Available at: https://pubmed.ncbi.nlm.nih.gov/32275259/
3. Kakodkar P, Kaka N, Baig MN. A Comprehensive Literature Review on the Clinical Presentation, and Management of the Pandemic Coronavirus Disease 2019 (COVID-19). [Internet]. Cureus. 2020;12(4):e7560. DOI: 10.7759/cureus.7560
4. Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. [Internet]. J Med Virol. 2020;92: 418-23. DOI: 10.1002/jmv.25681
5. Gomes SMR, Brito ACdS, Manfro WFP, Ribeiro-Alves M, Ribeiro RSdA, da Cal MS, et al. High levels of pro-inflammatory SARS-CoV2-specific biomarkers revealed by in vitro whole blood cytokine release assay (CRA) in recovered and long-term COVID-19 patients. [Internet]. PLoS ONE. 2023; 18(4): e0283983. DOI: 10.1371/journal.put.0283983
6. Matsuyama T, Kubli SP, Yoshinaga SK, Pfeffe, K, Mak TW. An aberrant STAT pathway is central to COVID-19. [Internet]. Cell death and differentiation.2020;27 (12):3209-3225. DOI: 10.1038/s41418-020-00633-7
7. Purcaru OS, Artene SA, Barcan E, Silosi CA, Stanciu I, Danoiu S, et al. The Interference between SARS-CoV-2 and Tyrosine Kinase Receptor Signaling in Cancer. [Internet]. Int. J. Mol. Sci. 2021; 22: 4830. DOI:10.3390/ijms22094830
8. de Almeida SMV, Santos Soares JC, Dos Santos KL, Alves JEF, Ribeiro AG, Jacob ÍTT, et al. COVID-19 therapy: What weapons do we bring into battle? [Internet]. Bioorganic & medicinal chemistry.2020; 28(23):115757. DOI: 10.1016/j.bmc.2020.115757
9. Shen Q, Li J, Zhang Z, Guo S, Wan Q, An X, et al. COVID-19: systemic pathology and its implications for therapy. [Internet]. International journal of biological sciences .2022; 18(1):386-408. DOI: 10.7150/ijbs.65911
10. London HD, Armada JJ, Martínez AH, Abdo Cuza AA, Sánchez YH, Rodríguez AG, et al. Blocking EGFR with nimotuzumab: a novel strategy for COVID-19 treatment. [Internet]. Immunotherapy. 2022; 14(7):521-30. DOI: 10.2217/imt-2022-0027
11. Saavedra D, Añé-Kourí AL, Gregorich EML, Mena J, Lorenzo-Luaces P, London HD, et al. Immune, inflammatory and prothrombotic parameters in COVID-19 patients treated with an anti EGFR antibody. [Internet]. Immunol Lett. 2022; 251-252:1-8. DOI: 10.1016/j.imlet.2022.09.005
12. Castells Martínez EM, del Valle R, González EC, Melchor A, Pérez PL, González I, et al. An enzyme immunoassay for determining epidermal growth factor (EGF) in human serum samples using an ultramicroanalytical system. [Internet]. J Immunoassay Immunochem. 2017; 38(2):190-201. DOI: 10.1080/15321819.2016.1236729
13. Crombet Ramos T, Santos Morales O, Dy GK, León Monzón K, Lage Dávila A. The Position of EGF Deprivation in the Management of Advanced Non-Small Cell Lung Cancer. Frontiers in Oncology. 2021; 11:639745. DOI: 10.3389/fonc.2021.639745
14. Ministry of Public Health. National Action Protocol for Covid-19. Version 1.7. Havana: Minsap; 2021.
15. Ministry of Public Health. Regulation D 03-21 Good Clinical Laboratory Practices. Havana: Center for State Control of Medicines, Medical Equipment and Devices (CECMED); 2021. [access: 22/04/2021]. Available at: https://www.cecmed.cu/sites/default/files/adjuntos/Regla-mentacion/ResRegBPLC%20firmada.pdf
16. World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013; 310(20):2191-4. DOI: 10.1001/jama.2013.281053
17. International Council for Harmonization (ICH). ICH-E6 Good Clinical Practice (GCP). ICH; 2021. [access: 22/04/2021]. Available at: https://database.ich.org/sites/default/files/ICH_E6-R3_GCP-Principles_Draft_2021_0419.pdf
18. Abbas AK, Lichtman AH, Pillai S. Cellular and Molecular Immunology. 10aed. Madrid: Elsevier; 2021. [access: 22/04/2021]. Available at: https://archive.org/details/cellular-and-molecular-immunology-10th-edition/page/n1/mode/2up
19. Sohn KM, Lee SG, Kim HJ, Cheon S, Jeong H, Lee J, et al. COVID-19 patients upregulate toll-like receptor 4-mediated inflammatory signaling that mimics bacterial sepsis. [Internet]. J Korean Med Sci. 2020 [access: 12/04/2024]; 35(38):e343. https://pubmed.ncbi.nlm.nih.gov/32989935/
20. Cortese M, Lee JY, Cerikan B, Neufeldt CJ, Oorschot VMJ, Köhrer S, et al. Integrative imaging reveals SARS-CoV-2-induced reshaping of subcellular morphologies. [Internet]. Cell Host Microbe. 2020; 28(6):853-66. DOI: 10.1016/j.chom.2020.11.003
21. Zanza C, Romenskaya T, Manetti AC, Franceschi F, La Russa R, Bertozzi G, et al. Cytokine storm in COVID-19: Immunopathogenesis and therapy. [Internet]. Medicine (Kaunas). 2022 [access: 12/04/2024]; 58(2):144. Available at: https://pubmed.ncbi.nlm.nih.gov/35208467
22. Monserrat J, Gómez-Lahoz A, Ortega M, Sanz J, Muñoz B, Arévalo-Serrano J, et al. Role of innate and adaptive cytokines in the survival of COVID-19 patients. [Internet]. Int J Mol Sci. 2022 [access: 12/04/2024]; 23(18):10344. Available at: https://pubmed.ncbi.nlm.nih.gov/36142255
23. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. [Internet]. Lancet. 2020 [access: 12/04/2024]; 395(10223):497-506. Available at: https://pubmed.ncbi.nlm.nih.gov/31986264
24. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. [Internet]. Lancet. 2020 [access: 12/04/2024]; 395(10229):1033-4. Available at: https://pubmed.ncbi.nlm.nih.gov/32192578
25. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. [Internet]. Nature. 2020 [access: 12/04/2024]; 579(7798):270-3. Available at: https://pubmed.ncbi.nlm.nih.gov/32015507
26. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. [Internet]. Cell. 2020 [access: 12/04/2024]; 181(2):271-280.e8. Available at: https://pubmed.ncbi.nlm.nih.gov/32142651
27. Karki R, Kanneganti TD. Innate immunity, cytokine storm, and inflammatory cell death in COVID-19. [Internet]. J Transl Med. 2022; 20(1): 542. DOI: 10.1186/s12967-022-03767-z
28. Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. [Internet]. Nat Commun. 2020; 11(1):1620. DOI: 10.1038/s41467-020-15562-9
29. Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, et al. Cell entry mechanisms of SARS-CoV-2. [Internet]. Proc Natl Acad Sci US A. 2020 [access: 12/04/2024]; 117(21):11727-34. Available at: https://pubmed.ncbi.nlm.nih.gov/32376634
30. Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. [Internet]. Nat Rev Microbiol. 2021; 19(3):141-54. DOI: 10.1038/s41579-020-00459-7
31. Qian YR, Guo YI, Wan HY, Fan L, Feng Y, Ni L, et al. Angiotensin-converting enzyme 2 attenuates the metastasis of non-small cell lung cancer through inhibition of epithelial-mesenchymal transition. [Internet]. Oncol Rep. 2013 [access: 12/04/2024]; 29(6):2408-14. Available at: https://pubmed.ncbi.nlm.nih.gov/23545945
32. Zhong J, Li L, Wang Z, Bai H, Gai F, Duan J, et al. Potential resistance mechanisms revealed by targeted sequencing from lung adenocarcinoma patients with primary resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs). [Internet]. J Thorac Oncol. 2017 [access: 12/04/2024]; 12(12):1766-78. Available at: https://pubmed.ncbi.nlm.nih.gov/28818608
33. Deben C, Le Compte M, Siozopoulou V, Lambrechts H, Hermans C, Lau HW, et al. Expression of SARS-CoV-2-related surface proteins in non-small-cell lung cancer patients and the influence of standard of care therapy. [Internet]. Cancers (Basel). 2022 [access: 12/04/2024]; 14(17):4074. Available at: https://pubmed.ncbi.nlm.nih.gov/36077610
34. Engler M, Albers D, Von Maltitz P, Groß R, Münch J, Cirstea IC. ACE2-EGFR-MAPK signaling contributes to SARS-CoV-2 infection. [Internet]. Life Sci Alliance. 2023 [access: 12/04/2024]; 6(9):e202201880. Available at: https://pubmed.ncbi.nlm.nih.gov/37402592
35. Yoo J, Perez CER, Nie W, Edwards RA, Sinnett-Smith J, Rozengurt E. TNF- α induces upregulation of EGFR expression and signaling in human colonic myofibroblasts. [Internet]. Am J Physiol Gastrointest Liver Physiol. 2012 [access: 12/04/2024]; 302(8):G805-14. Available at: https://pubmed.ncbi.nlm.nih.gov/22301110
36. Yoo J, Rodriguez Perez CE, Nie W, Sinnett-Smith J, Rozengurt E. TNF- α and LPA promote synergistic expression of COX-2 in human colonic myofibroblasts: role of LPA-mediated transactivation of upregulated EGFR. [Internet]. BMC Gastroenterol. 2013 [access: 12/04/2024]; 13(1):90. DOI: 10.1186/1471-230X-13-90
37. Chen J, Chen JK, Nagai K, Plieth D, Tan M, Lee TC, et al. EGFR signaling promotes TGF β -dependent renal fibrosis. [Internet]. J Am Soc Nephrol. 2012 [access: 12/04/2024]; 23(2):215-24. Available at: https://pubmed.ncbi.nlm.nih.gov/22095949
38. Zhuang S, Liu N. EGFR signaling in renal fibrosis. [Internet]. Kidney Int Suppl. 2014 [access: 12/04/2024]; 4(1):70-4. Available at: https://pubmed.ncbi.nlm.nih.gov/26312153
39. Single cell type - EGFR - The Human Protein Atlas. Proteinatlas.org. [access: 12/04/2024]. Available at: https://www.proteinatlas.org/ENSG00000146648-EGFR/single+cell+type
40. Single cell type - ACE2 - The Human Protein Atlas: single cell type. Proteinatlas.org. [access: 12/04/2024]. https://www.proteinatlas.org/ENSG00000130234-ACE2/single+cell+type
41. Kjær IM, Olsen DA, Alnor A, Brandslund I, Bechmann T, Madsen JS. EGFR and EGFR ligands in serum in healthy women; reference intervals and age dependency. [Internet]. Clin Chem Lab Med. 2019; 57(12):1948-55. DOI: 10.1515/ccLM-2019-0376
42. Meybosch S, De Monie A, Anné C, Bruyndonckx L, Jürgens A, De Winter BY, et al. Epidermal growth factor and its influencing variables in healthy children and adults. [Internet]. PLoS One. 2019 [access: 12/04/2024]; 14(1):e0211212. Available at: https://pubmed.ncbi.nlm.nih.gov/30677083
43. Blair P, Flaumenhaft R. Platelet α -granules: Basic biology and clinical correlates. [Internet]. Blood Rev. 2009 [access: 12/04/2024];23(4):177-89. Available at: https://pubmed.ncbi.nlm.nih.gov/19450911
44. Kardas G, Daszyńska-Kardas A, Marynowski M, Brząkalska O, Kuna P, Panek M. Role of platelet-derived growth factor (PDGF) in asthma as an immunoregulatory factor mediating airway remodeling and possible pharmacological target. [Internet]. Front Pharmacol. 2020 [access: 12/04/2024]; 14(11):47. Available at: https://pubmed.ncbi.nlm.nih.gov/32116722
45. Chaudhary PK, Kim S, Kim S. Shedding light on the cell biology of platelet-derived extracellular vesicles and their biomedical applications. [Internet]. Life (Basel). 2023 [access: 12/04/2024]; 13(6):1403. Available at: https://pubmed.ncbi.nlm.nih.gov/37374185
46. González Pérez I, Cáceres Lavernia HH, Carr Pérez A, León Monzón K. Measurement of Serum EGF Levels, a Methodological Approach: Learning What Means Low-/High-Concentration of EGF In Serum". Some Clinical Implications. [Internet]. J Mol Biomark Diagn. 2017; 8(335):2. DOI: 10.4172/2155-9929.1000335
2. Rabaan AA, Al-Ahmed SH, Haque S, Sah R, Tiwari R, Malik YS, et al. SARS-CoV-2, SARS-CoV, and MERS-COV: A comparative overview. [Internet]. Le infections in medicine. 2020;28(2):174-84. Available at: https://pubmed.ncbi.nlm.nih.gov/32275259/
3. Kakodkar P, Kaka N, Baig MN. A Comprehensive Literature Review on the Clinical Presentation, and Management of the Pandemic Coronavirus Disease 2019 (COVID-19). [Internet]. Cureus. 2020;12(4):e7560. DOI: 10.7759/cureus.7560
4. Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. [Internet]. J Med Virol. 2020;92: 418-23. DOI: 10.1002/jmv.25681
5. Gomes SMR, Brito ACdS, Manfro WFP, Ribeiro-Alves M, Ribeiro RSdA, da Cal MS, et al. High levels of pro-inflammatory SARS-CoV2-specific biomarkers revealed by in vitro whole blood cytokine release assay (CRA) in recovered and long-term COVID-19 patients. [Internet]. PLoS ONE. 2023; 18(4): e0283983. DOI: 10.1371/journal.put.0283983
6. Matsuyama T, Kubli SP, Yoshinaga SK, Pfeffe, K, Mak TW. An aberrant STAT pathway is central to COVID-19. [Internet]. Cell death and differentiation.2020;27 (12):3209-3225. DOI: 10.1038/s41418-020-00633-7
7. Purcaru OS, Artene SA, Barcan E, Silosi CA, Stanciu I, Danoiu S, et al. The Interference between SARS-CoV-2 and Tyrosine Kinase Receptor Signaling in Cancer. [Internet]. Int. J. Mol. Sci. 2021; 22: 4830. DOI:10.3390/ijms22094830
8. de Almeida SMV, Santos Soares JC, Dos Santos KL, Alves JEF, Ribeiro AG, Jacob ÍTT, et al. COVID-19 therapy: What weapons do we bring into battle? [Internet]. Bioorganic & medicinal chemistry.2020; 28(23):115757. DOI: 10.1016/j.bmc.2020.115757
9. Shen Q, Li J, Zhang Z, Guo S, Wan Q, An X, et al. COVID-19: systemic pathology and its implications for therapy. [Internet]. International journal of biological sciences .2022; 18(1):386-408. DOI: 10.7150/ijbs.65911
10. London HD, Armada JJ, Martínez AH, Abdo Cuza AA, Sánchez YH, Rodríguez AG, et al. Blocking EGFR with nimotuzumab: a novel strategy for COVID-19 treatment. [Internet]. Immunotherapy. 2022; 14(7):521-30. DOI: 10.2217/imt-2022-0027
11. Saavedra D, Añé-Kourí AL, Gregorich EML, Mena J, Lorenzo-Luaces P, London HD, et al. Immune, inflammatory and prothrombotic parameters in COVID-19 patients treated with an anti EGFR antibody. [Internet]. Immunol Lett. 2022; 251-252:1-8. DOI: 10.1016/j.imlet.2022.09.005
12. Castells Martínez EM, del Valle R, González EC, Melchor A, Pérez PL, González I, et al. An enzyme immunoassay for determining epidermal growth factor (EGF) in human serum samples using an ultramicroanalytical system. [Internet]. J Immunoassay Immunochem. 2017; 38(2):190-201. DOI: 10.1080/15321819.2016.1236729
13. Crombet Ramos T, Santos Morales O, Dy GK, León Monzón K, Lage Dávila A. The Position of EGF Deprivation in the Management of Advanced Non-Small Cell Lung Cancer. Frontiers in Oncology. 2021; 11:639745. DOI: 10.3389/fonc.2021.639745
14. Ministry of Public Health. National Action Protocol for Covid-19. Version 1.7. Havana: Minsap; 2021.
15. Ministry of Public Health. Regulation D 03-21 Good Clinical Laboratory Practices. Havana: Center for State Control of Medicines, Medical Equipment and Devices (CECMED); 2021. [access: 22/04/2021]. Available at: https://www.cecmed.cu/sites/default/files/adjuntos/Regla-mentacion/ResRegBPLC%20firmada.pdf
16. World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013; 310(20):2191-4. DOI: 10.1001/jama.2013.281053
17. International Council for Harmonization (ICH). ICH-E6 Good Clinical Practice (GCP). ICH; 2021. [access: 22/04/2021]. Available at: https://database.ich.org/sites/default/files/ICH_E6-R3_GCP-Principles_Draft_2021_0419.pdf
18. Abbas AK, Lichtman AH, Pillai S. Cellular and Molecular Immunology. 10aed. Madrid: Elsevier; 2021. [access: 22/04/2021]. Available at: https://archive.org/details/cellular-and-molecular-immunology-10th-edition/page/n1/mode/2up
19. Sohn KM, Lee SG, Kim HJ, Cheon S, Jeong H, Lee J, et al. COVID-19 patients upregulate toll-like receptor 4-mediated inflammatory signaling that mimics bacterial sepsis. [Internet]. J Korean Med Sci. 2020 [access: 12/04/2024]; 35(38):e343. https://pubmed.ncbi.nlm.nih.gov/32989935/
20. Cortese M, Lee JY, Cerikan B, Neufeldt CJ, Oorschot VMJ, Köhrer S, et al. Integrative imaging reveals SARS-CoV-2-induced reshaping of subcellular morphologies. [Internet]. Cell Host Microbe. 2020; 28(6):853-66. DOI: 10.1016/j.chom.2020.11.003
21. Zanza C, Romenskaya T, Manetti AC, Franceschi F, La Russa R, Bertozzi G, et al. Cytokine storm in COVID-19: Immunopathogenesis and therapy. [Internet]. Medicine (Kaunas). 2022 [access: 12/04/2024]; 58(2):144. Available at: https://pubmed.ncbi.nlm.nih.gov/35208467
22. Monserrat J, Gómez-Lahoz A, Ortega M, Sanz J, Muñoz B, Arévalo-Serrano J, et al. Role of innate and adaptive cytokines in the survival of COVID-19 patients. [Internet]. Int J Mol Sci. 2022 [access: 12/04/2024]; 23(18):10344. Available at: https://pubmed.ncbi.nlm.nih.gov/36142255
23. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. [Internet]. Lancet. 2020 [access: 12/04/2024]; 395(10223):497-506. Available at: https://pubmed.ncbi.nlm.nih.gov/31986264
24. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. [Internet]. Lancet. 2020 [access: 12/04/2024]; 395(10229):1033-4. Available at: https://pubmed.ncbi.nlm.nih.gov/32192578
25. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. [Internet]. Nature. 2020 [access: 12/04/2024]; 579(7798):270-3. Available at: https://pubmed.ncbi.nlm.nih.gov/32015507
26. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. [Internet]. Cell. 2020 [access: 12/04/2024]; 181(2):271-280.e8. Available at: https://pubmed.ncbi.nlm.nih.gov/32142651
27. Karki R, Kanneganti TD. Innate immunity, cytokine storm, and inflammatory cell death in COVID-19. [Internet]. J Transl Med. 2022; 20(1): 542. DOI: 10.1186/s12967-022-03767-z
28. Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. [Internet]. Nat Commun. 2020; 11(1):1620. DOI: 10.1038/s41467-020-15562-9
29. Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, et al. Cell entry mechanisms of SARS-CoV-2. [Internet]. Proc Natl Acad Sci US A. 2020 [access: 12/04/2024]; 117(21):11727-34. Available at: https://pubmed.ncbi.nlm.nih.gov/32376634
30. Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. [Internet]. Nat Rev Microbiol. 2021; 19(3):141-54. DOI: 10.1038/s41579-020-00459-7
31. Qian YR, Guo YI, Wan HY, Fan L, Feng Y, Ni L, et al. Angiotensin-converting enzyme 2 attenuates the metastasis of non-small cell lung cancer through inhibition of epithelial-mesenchymal transition. [Internet]. Oncol Rep. 2013 [access: 12/04/2024]; 29(6):2408-14. Available at: https://pubmed.ncbi.nlm.nih.gov/23545945
32. Zhong J, Li L, Wang Z, Bai H, Gai F, Duan J, et al. Potential resistance mechanisms revealed by targeted sequencing from lung adenocarcinoma patients with primary resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs). [Internet]. J Thorac Oncol. 2017 [access: 12/04/2024]; 12(12):1766-78. Available at: https://pubmed.ncbi.nlm.nih.gov/28818608
33. Deben C, Le Compte M, Siozopoulou V, Lambrechts H, Hermans C, Lau HW, et al. Expression of SARS-CoV-2-related surface proteins in non-small-cell lung cancer patients and the influence of standard of care therapy. [Internet]. Cancers (Basel). 2022 [access: 12/04/2024]; 14(17):4074. Available at: https://pubmed.ncbi.nlm.nih.gov/36077610
34. Engler M, Albers D, Von Maltitz P, Groß R, Münch J, Cirstea IC. ACE2-EGFR-MAPK signaling contributes to SARS-CoV-2 infection. [Internet]. Life Sci Alliance. 2023 [access: 12/04/2024]; 6(9):e202201880. Available at: https://pubmed.ncbi.nlm.nih.gov/37402592
35. Yoo J, Perez CER, Nie W, Edwards RA, Sinnett-Smith J, Rozengurt E. TNF- α induces upregulation of EGFR expression and signaling in human colonic myofibroblasts. [Internet]. Am J Physiol Gastrointest Liver Physiol. 2012 [access: 12/04/2024]; 302(8):G805-14. Available at: https://pubmed.ncbi.nlm.nih.gov/22301110
36. Yoo J, Rodriguez Perez CE, Nie W, Sinnett-Smith J, Rozengurt E. TNF- α and LPA promote synergistic expression of COX-2 in human colonic myofibroblasts: role of LPA-mediated transactivation of upregulated EGFR. [Internet]. BMC Gastroenterol. 2013 [access: 12/04/2024]; 13(1):90. DOI: 10.1186/1471-230X-13-90
37. Chen J, Chen JK, Nagai K, Plieth D, Tan M, Lee TC, et al. EGFR signaling promotes TGF β -dependent renal fibrosis. [Internet]. J Am Soc Nephrol. 2012 [access: 12/04/2024]; 23(2):215-24. Available at: https://pubmed.ncbi.nlm.nih.gov/22095949
38. Zhuang S, Liu N. EGFR signaling in renal fibrosis. [Internet]. Kidney Int Suppl. 2014 [access: 12/04/2024]; 4(1):70-4. Available at: https://pubmed.ncbi.nlm.nih.gov/26312153
39. Single cell type - EGFR - The Human Protein Atlas. Proteinatlas.org. [access: 12/04/2024]. Available at: https://www.proteinatlas.org/ENSG00000146648-EGFR/single+cell+type
40. Single cell type - ACE2 - The Human Protein Atlas: single cell type. Proteinatlas.org. [access: 12/04/2024]. https://www.proteinatlas.org/ENSG00000130234-ACE2/single+cell+type
41. Kjær IM, Olsen DA, Alnor A, Brandslund I, Bechmann T, Madsen JS. EGFR and EGFR ligands in serum in healthy women; reference intervals and age dependency. [Internet]. Clin Chem Lab Med. 2019; 57(12):1948-55. DOI: 10.1515/ccLM-2019-0376
42. Meybosch S, De Monie A, Anné C, Bruyndonckx L, Jürgens A, De Winter BY, et al. Epidermal growth factor and its influencing variables in healthy children and adults. [Internet]. PLoS One. 2019 [access: 12/04/2024]; 14(1):e0211212. Available at: https://pubmed.ncbi.nlm.nih.gov/30677083
43. Blair P, Flaumenhaft R. Platelet α -granules: Basic biology and clinical correlates. [Internet]. Blood Rev. 2009 [access: 12/04/2024];23(4):177-89. Available at: https://pubmed.ncbi.nlm.nih.gov/19450911
44. Kardas G, Daszyńska-Kardas A, Marynowski M, Brząkalska O, Kuna P, Panek M. Role of platelet-derived growth factor (PDGF) in asthma as an immunoregulatory factor mediating airway remodeling and possible pharmacological target. [Internet]. Front Pharmacol. 2020 [access: 12/04/2024]; 14(11):47. Available at: https://pubmed.ncbi.nlm.nih.gov/32116722
45. Chaudhary PK, Kim S, Kim S. Shedding light on the cell biology of platelet-derived extracellular vesicles and their biomedical applications. [Internet]. Life (Basel). 2023 [access: 12/04/2024]; 13(6):1403. Available at: https://pubmed.ncbi.nlm.nih.gov/37374185
46. González Pérez I, Cáceres Lavernia HH, Carr Pérez A, León Monzón K. Measurement of Serum EGF Levels, a Methodological Approach: Learning What Means Low-/High-Concentration of EGF In Serum". Some Clinical Implications. [Internet]. J Mol Biomark Diagn. 2017; 8(335):2. DOI: 10.4172/2155-9929.1000335
Descargas
Publicado
02.10.2024
Cómo citar
1.
Pérez Hernández HJ. Aproximación inicial al factor de crecimiento epidérmico en la infección por SARS-CoV-2. Rev Cubana Med Milit [Internet]. 2 de octubre de 2024 [citado 2 de abril de 2025];53(4):e024060858. Disponible en: https://revmedmilitar.sld.cu/index.php/mil/article/view/60858
Número
Sección
Artículo de Investigación
Licencia
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cual estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons. Los contenidos que aquí se exponen pueden ser compartidos, copiados y redistribuidos en cualquier medio o formato. Pueden ser adaptados, remezclados, transformados o creados otros a partir del material, mediante los siguientes términos: Atribución (dar crédito a la obra de manera adecuada, proporcionando un enlace a la licencia, e indicando si se han realizado cambios); no-comercial (no puede hacer uso del material con fines comerciales) y compartir-igual (si mezcla, transforma o crea nuevo material a partir de esta obra, podrá distribuir su contribución siempre que utilice la misma licencia que la obra original).
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada.