Diagnostic Accuracy of Insulin Resistance in Diabetes and Prediabetes
Keywords:
diabetes mellitus, prediabetic state, hyperglycemia, insulin resistance, public healthAbstract
Introduction: It has been suggested that the Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) could serve as an additional test to support and complement existing tests for hyperglycemic states.
Objective: To determine the diagnostic capacity of HOMA-IR for Type 2 diabetes mellitus (T2DM) and prediabetes.
Methods: Diagnostic test study. Both were measured according to elevated fasting; postprandial, and glycosylated hemoglobin levels. The receiver operating characteristic curve (ROC) along with its corresponding area under the curve (AUC) was used to evaluate diagnostic efficacy. Sensitivity and specificity metric were calculated.
Results: The prevalence of prediabetes and T2DM were 18.82% and 10.52%, respectively. The median HOMA-IR was 1.33. HOMA-IR had an AUC of 0.843 for prediabetes in the total population, with a cutoff point of 1.51, a sensitivity of 88.37%, and a specificity of 73.05%. In the case of T2DM, the AUC was 0.907, with a cutoff point of 2.02, a sensitivity of 90.91%, and a specificity of 77.99%.
Conclusions: HOMA-IR demonstrates good diagnostic capability for the detection of prediabetes and T2DM.
Downloads
References
1. Diabetes Canada Clinical Practice Guidelines Expert Committee; Punthakee Z, Goldenberg R, Katz P. Definition, Classification and Diagnosis of Diabetes, Prediabetes and Metabolic Syndrome [Internet]. Can J Diabetes. 2018;42 (Suppl):10-15. DOI: 10.1016/j.jcjd.2017.10.003
2. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition [Internet]. Diabetes Res Clin Pract. 2019;157:107843. DOI: 10.1016/j.diabres.2019.107843
3. Carrillo-Larco R, Bernabé-Ortiz A. Diabetes mellitus tipo 2 en Perú: una revisión sistemática sobre la prevalencia e incidencia en población general. [Internet]. Rev Perú Med Exp Salud Publica. 2019;36(1):26-36. DOI:10.17843/rpmesp.2019.361.4027
4. Seclen SN, Rosas ME, Arias AJ, Huayta E, Medina CA. Prevalence of diabetes and impaired fasting glucose in Peru: report from PERUDIAB, a national urban population-based longitudinal study [Internet]. BMJ Open Diabetes Research and Care. 2015;3(1):e000110. DOI: 10.1136/bmjdrc-2015-000110
5. Sitasuwan T, Lertwattanarak R. Prediction of type 2 diabetes mellitus using fasting plasma glucose and HbA1c levels among individuals with impaired fasting plasma glucose: a cross-sectional study in Thailand. [Internet]. BMJ Open. 2020; 10(11):e041269. DOI: 10.1136/bmjopen-2020-041269
6. Joung KH, Ju SH, Kim JM, Choung S, Lee JM, Park KS, et al. Clinical Implications of Using Post-Challenge Plasma Glucose Levels for Early Diagnosis of Type 2 Diabetes Mellitus in Older Individuals [Internet]. Diabetes Metab J. 2018;42(2):147-54. DOI: 10.4093/dmj.2018.42.2.147
7. Aggarwal M, Verma G, Wahid A, Mathew S, Roat A. Visceral Fat Volume is a Better Predictor of Insulin Resistance than Abdominal Wall Fat Index in Patients with Prediabetes and Type 2 Diabetes Mellitus [Internet]. J Assoc Physicians India. 2022 [acceso: 12/08/2024];70(4):11-2. Disponible en: https://pubmed.ncbi.nlm.nih.gov/35443353/
8. Biernacka-Bartnik A, Kocelak P, Owczarek AJ. The cut-off value for HOMA-IR discriminating the insulin resistance based on the SHBG level in women with polycystic ovary syndrome [Internet]. Front Med. 2023; 10:1100547. DOI: 10.3389/fmed.2023.1100547
9. Cohen JF, Korevaar DA, Altman DG, Bruns DE, Gatsonis CA, Hooft L, et al. STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration [Internet]. BMJ Open. 2016; 6(11):e012799. DOI: 10.1136/bmjopen-2016-012799
10. Carrillo-Larco RM, Miranda JJ, Gilman RH, Checkley W, Smeeth L, Bernabe-Ortiz A, et al. The HOMA-IR Performance to Identify New Diabetes Cases by Degree of Urbanization and Altitude in Peru: The CRONICAS Cohort Study [Internet]. Journal of Diabetes Research. 2018; 2018:e7434918. DOI: 10.1155/2018/7434918
11. American Diabetes Association. American Diabetes Association Releases 2023 Standards of Care in Diabetes to Guide Prevention, Diagnosis, and Treatment for People Living with Diabetes [Internet]. Arlington: ADA; 2022. [acceso: 05/08/2023]. Disponible en: https://diabetes.org/newsroom/press-releases/2022/american-diabetes-association-2023-standards-care-diabetes-guide-for-prevention-diagnosis-treatment-people-living-with-diabetes
12. Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling [Internet]. Diabetes Care. 2004;27(6):1487-95. DOI: 10.2337/diacare.27.6.1487
13. Mantilla Toloza, S. C., & Gómez-Conesa, A. (2007). El Cuestionario Internacional de Actividad Física. Un instrumento adecuado en el seguimiento de la actividad física poblacional. Revista Iberoamericana de Fisioterapia y Kinesiología, 10(1), 48-52. DOI: 10.1016/S1138-6045(07)73665-1
14. Aggarwal M, Verma G, Wahid A, Mathew S, Roat A. Visceral Fat Volume is a Better Predictor of Insulin Resistance than Abdominal Wall Fat Index in Patients with Prediabetes and Type 2 Diabetes Mellitus [Internet]. J Assoc Physicians India. 2022 [acceso: 31/07/2024];70(4):11-12. Disponible en: https://pubmed.ncbi.nlm.nih.gov/35443353
15. Paracha AI, Haroon ZH, Aamir M, Bibi A. Diagnostic Accuracy of Markers of Insulin Resistance (HOMA-IR) and Insulin Sensitivity (QUICKI) in Gestational Diabetes [Internet]. J Coll Physicians Surg Pak. 2021;31(9):1015-9. DOI: 10.29271/jcpsp.2021.09.1015
16. González-González JG, Violante-Cumpa JR, Zambrano-Lucio M, Burciaga-Jimenez E, Castillo-Morales PL, Garcia-Campa M, et al. HOMA-IR as a predictor of Health Outcomes in Patients with Metabolic Risk Factors: A Systematic Review and Meta-analysis [Internet]. High Blood Press Cardiovasc Prev. 2022;29(6):547-64. DOI:10.1007/s40292-022-00542-5
17. Sajiir H, Wong KY, Müller A, Keshvari S, Burr L, Aiello E, et al. Pancreatic beta-cell IL-22 receptor deficiency induces age-dependent dysregulation of insulin biosynthesis and systemic glucose homeostasis [Internet]. Nat Commun. 2024;15(1):4527. DOI: 10.1038/s41467-024-48320-2
18. Jamjl J. Overnutrition, Hyperinsulinemia and Ectopic Fat: It Is Time for A Paradigm Shift in the Management of Type 2 Diabetes [Internet]. International Journal of Molecular Sciences. 2024;25(10):5488. DOI: 10.3390/ijms25105488
19. Vera-Ponce VJ, Rodas-Alvarado L, Talavera JE, Cruz-Ausejo L, Torres-Malca JR, Vera-Ponce VJ, et al. Asociación entre resistencia a la insulina y proteína C reactiva en una muestra de peruanos no obesos [Internet]. Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo. 2021;14(2):124-7. DOI: 10.35434/rcmhnaaa.2021.142.1021
20. Vera-Ponce VJ, Guerra-Valencia J, Poma MÁ, Loayza-Castro JA, Zeñas-Trujillo GZ, Zuzunaga-Montoya FE, et al. Rendimiento diagnóstico de once indicadores para resistencia a la insulina en una muestra de pobladores peruanos [Internet]. Medicina Clínica y Social. 2023;7(3):168-76. DOI: 10.52379/mcs.v7i3.292
21. Bonora E, Targher G, Alberiche M, Bonadonna RC, Saggiani F, Zenere MB, et al. Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity: studies in subjects with various degrees of glucose tolerance and insulin sensitivity [Internet]. Diabetes Care. 2000;23(1):57-63. DOI: 10.2337/diacare.23.1.57
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Victor Juan Vera Ponce

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who have publications with this Journal accept the following terms:
- The authors will retain their copyright and guarantee the Journal the right of first publication of their work, which will simultaneously be subject to the Creative Commons Attribution License. The content presented here can be shared, copied and redistributed in any medium or format; Can be adapted, remixed, transformed or created from the material, using the following terms: Attribution (giving appropriate credit to the work, providing a link to the license, and indicating if changes have been made); non-commercial (you cannot use the material for commercial purposes) and share-alike (if you remix, transform or create new material from this work, you can distribute your contribution as long as you use the same license as the original work).
- The authors may adopt other non-exclusive license agreements for the distribution of the published version of the work (for example: depositing it in an institutional electronic archive or publishing it in a monographic volume) as long as the initial publication in this Journal is indicated.
- Authors are allowed and recommended to disseminate their work through the Internet (e.g., in institutional electronic archives or on their website) before and during the submission process, which can produce interesting exchanges and increase citations. of the published work.