Competencies in electrocardiographic interpretation in Medical Students at a Licensed University in Peru

Authors

Keywords:

cardiac arrhythmias, competency-Based Education, medical, myocardial infarction, students.

Abstract

Introduction: The interpretation of the electrocardiogram is crucial in the diagnosis of myocardial infarction and ventricular and supraventricular arrhythmias, diseases that represent important medical emergencies.
Objetive: To determine the level of competence in ECG interpretation among medical students.
Methods: Observational, descriptive, cross-sectional study. A total of 180 medical students were surveyed. The study instrument contained a total of 20 items, which were grouped into 3 dimensions: basic competencies in electrocardiography, competencies in the recognition of myocardial infarction and competencies in the recognition of arrhythmias. Likewise, sociodemographic variables, age, gender, having a second health career, taking extracurricular courses in electrocardiography and the historical record of failed subjects were evaluated. Descriptive statistics and the chi-square test for associations were applied.
Results: Among the 180 students, the median and interquartile range of the evaluation was 9 ± 5. The dimensions of basic ECG competencies, myocardial infarction recognition, and arrhythmia recognition recorded values of 3 ± 2.75, 3 ± 2.00 y 3 ± 2.10, respectively. The frequency of approved was 64 (35.6%); the variables extracurricular training (p-value = 0.021) and second profession in health (p-value = 0.003) presented a statistically significant association with respect to the level of knowledge in electrocardiography.
Conclusions: Student´s level of competence in interpreting electrocardiograms may be inadequate when they have not completed extracurricular training or second professional careers in health.

Downloads

Download data is not yet available.

Author Biographies

Felix Alexander Peña-Corrales, Universidad San Juan Bautista. Facultad de Medicina Humana. Lima, Perú.

Medico jefe de un centro de salud nivel I-2 en el Ministerio de Salud de Peru

Horus Michael Virú-Flores, Universidad San Juan Bautista. Facultad de Medicina Humana. Lima, Perú.

Medico Investigador RENACYT asociado a la Universidad San Juan Bautista. Facultad de Medicina Humana. Lima, Perú.

Joseph Alburqueque-Melgarejo, Universidad Científica del Sur. Facultad de Medicina Humana. Lima, Perú

Docente de la catedra de morfofisiologia locomotor en la Universidad Científica del Sur. Facultad de Medicina Humana. Lima, Perú

Israel Armando Guerra-Cuyutupac, Universidad Científica del Sur. Facultad de Medicina Humana. Lima, Perú

Coordinador de la catedra de morfofisiologia locomotor en la Universidad Científica del Sur. Facultad de Medicina Humana. Lima, Perú

Jamee Guerra-Valencia, Universidad Privada del Norte. Facultad de Ciencias de la Salud. Lima, Perú.

Docente de la Catedra de Morfofisiologia de los sistemas en la Universidad Privada del Norte. Facultad de Ciencias de la Salud. Lima, Perú.

Martha Eugenia Aguirre-Coronado, Hospital de emergencias José Casimiro Ulloa. Oficina de Apoyo a la Docencia e Investigación. Lima, Perú.

Medico Jefa de la Oficina de Apoyo a la Docencia e investigacion del Hospital de emergencias José Casimiro Ulloa.

Claudia Veralucia Saldaña-Diaz, Instituto Nacional Materno Perinatal. Unidad Funcional de Investigación. Lima, Perú.

Medico Jefe de la Unidad Funcional de Investigacion del Instituto Nacional Materno Perinatal

Juan Carlos Ezequiel Roque, Universidad San Ignacio de Loyola. Facultad de Ciencias de la Salud. Lima, Perú.

Responsable de investigacion del Hospital de Emergencias José Casimiro Ulloa. Oficina de Apoyo a la Docencia e Investigación. Lima, Perú.

References

1. Zumba L, Guadamud J, Cruzate F. Evaluación y diagnóstico clínico cardiológico mediante la interpretación de electrocardiogramas [Internet]. RECIAMUC. 2023; 7(1):873-80. DOI: 10.26820/reciamuc/7.(1).enero.2023.873-880

2. Cortés H, Mendoza AJFN, Martinez YFR, López S, Sánchez A, Cortés F. Mejora de habilidades en la interpretación del electrocardiograma mediante un taller con simulación clínica [Internet]. EduMeCentro. 2020 [acceso: 02/03/2024]; 12(1):30-45. Disponible en: https://pesquisa.bvsalud.org/portal/resource/pt/biblio-1089997

3. Viljoen C, Millar R, Manning K, Burch V. Clinically contextualised ECG interpretation: the impact of prior clinical exposure and case vignettes on ECG diagnostic accuracy [Internet]. BMC Medical Education. 2021; 21(1):417 DOI: 10.1186/s12909-021-02854-x

4. Mann A, Cunningham J, Tumolo A, King C. Evaluating a Blended Learning Model for Medical Student ECG Teaching [Internet]. Southern Medical Journal. 2023; 116(2):57-61. DOI: 10.14423/SMJ.0000000000001496

5. Sharif SA, Elshami W, Alkhwaldi D, Saleh HM, Saleh K. Electrocardiogram Interpretation Competence and Confidence in Undergraduate Medical Students: A Cross-Sectional Study [Internet]. Journal of Contemporary Medical Education. 2022; 10(2):55-61. DOI: 10.5455/jcme.20220125085322

6. Jablonover RS, Lundberg E, Zhang Y, Stagnaro-Green A. Competency in electrocardiogram interpretation among graduating medical students [Internet]. Teach Learn Med. 2014; 26(3):279-84. DOI: 10.1080/10401334.2014.918882

7. Vishnevsky G, Cohen T, Elitzur Y, Reis S. Competency and confidence in ECG interpretation among medical students [Internet]. Int J Med Educ. 2022; 13:315-21. DOI: 10.5116/ijme.6372.2a55

8. Elsheikh E, Alkhteeb N, Alamer A. Medical Students' Competency and Confidence in Interpreting Electrocardiograms at King Faisal University, Al-Ahsa [Internet]. Cureus. 2022; 15(10):1-10. DOI: 10.7759/cureus.46393

9. Joseph R, Fenton J, Winchester D. Integrated ECG Interpretation Course for the Improvement of Medical Student Electrocardiography Literacy [Internet]. Med Sci Educ. 2022; 32(6):1351-4. DOI: 10.1007/s40670-022-01644-4

10. Serafi A, Abdulrahman O, Alharthi F, Alzahrani MM, Alotaibi N, Almatrafi M, et al. Electrocardiography interpretation competency among medical students in Umm Al-Qura University: A cross-sectional study [Internet]. Journal of Umm Al-Qura University for Medical Sciences. 2023; 9(1):71-7. DOI: 10.54940/ms99959743

11. Waechter J, Reading D, Hee Lee C, Walker M. Quantifying the medical student learning curve for ECG rhythm strip interpretation using deliberate practice [Internet]. GMS J Med Educ. 2019; 36(4):1-21. DOI: 10.3205/zma001248

12. Nausheen F, Madhere P, Siddiqui S, Khan FH. STROBE: strengthening the reporting of observational studies in epidemiology - The case of anesthesia literature [Internet]. Saudi J Anaesth. 2024; 18(2):137-42. DOI: 10.4103/sja.sja_18_137

13. Keyvan A, Alireza M, Mirtohid H, Hamed Z, Islam A, Yagoob H, et al. Evaluación de la competencia de interpretación de electrocardiogramas entre profesiones de la salud y estudiantes de la Universidad de Ciencias Médicas de Ardabil: Un estudio multidisciplinario [Internet]. BMC Med Educ. 2022; 22:488. DOI: 10.1186/s12909-022-03518-0

14. Anculle-Arauco V, Krüger-Malpartida H, Arevalo-Flores M. Content validation using Aiken methodology through expert judgment of the first Spanish version of the Eppendorf Schizophrenia Inventory (ESI) in Peru: A brief qualitative report [Internet]. Rev Psiquiatr Salud Ment. 2023 [acceso: 02/03/2024]; 17(2):110-3. Disponible en: https://www.sciencedirect.com/science/article/pii/S1888989122001367

15. Ntumi S, Agbenyo S, Bulala T. Estimating the Psychometric Properties (Item Difficulty, Discrimination and Reliability Indices) of Test Itemsusing Kuder-Richardson Approach (KR-20) [Internet]. Shanlax International Journal of Education. 2023; 11(3):18. DOI: 10.34293/education.v11i3.6081

16. WMA - The World Medical Association. WMA Declaration of Taipei on Ethical Considerations regarding Health Databases and Biobanks [Internet]. 2023. [acceso: 02/03/2024]. Disponible en: https://www.wma.net/policies-post/wma-declaration-of-taipei-on-ethical-considerations-regarding-health-databases-and-biobanks/

17. Alanazi H, Ahmed A, Alsadi M. Competency differences in ECG interpretations between medical students, interns, and family residents [Internet]. Eur Heart J. 2020; 41(2):1-10. DOI: 10.1093/ehjci/ehaa946.0376

18. Ohn MH, Souza U, Ohn KM. A qualitative study on negative attitude toward electrocardiogram learning among undergraduate medical students [Internet]. Tzu Chi Med J. 2020; 32(4):392-7. DOI: 10.4103/tcmj.tcmj_91_19

19. Pourmand A, Tanski M, Davis S. Educational technology improves ECG interpretation of acute myocardial infarction among medical students and emergency medicine residents [Internet]. West J Emerg Med. 2015; 16(1):133-7. DOI: 10.5811/westjem.2014.12.23706

20. McEvoy MD, Dewaay DJ, Vanderbilt A. Are fourth-year medical students as prepared to manage unstable patients as they are to manage stable patients? [Internet]. Acad Med. 2014; 89(4):618-24. DOI: 10.1097/acm.0000000000000192

21. Dimitrios P, Kalafati M, Pliatsika P. Comparison of two teaching methods for cardiac arrhythmia interpretation among nursing students [Internet]. Resuscitation. 2014; 85(2):260-5. DOI: 10.1016/j.resuscitation.2013.09.023

22. Sullivan A, Mendis B, Kim J. Recognition and Management of Cardiac Arrhythmias: A Teaching Module for Physician Assistant Students [Internet]. GW Research Days 2016-2020. 2017. [acceso: 02/03/2024]. Disponible en: https://hsrc.himmelfarb.gwu.edu/gw_research_days/2017/SMHS/63/

Published

2024-11-16

How to Cite

1.
Peña-Corrales FA, Virú-Flores HM, Alburqueque-Melgarejo J, Guerra-Cuyutupac IA, Guerra-Valencia J, Aguirre-Coronado ME, et al. Competencies in electrocardiographic interpretation in Medical Students at a Licensed University in Peru. Rev Cubana Med Milit [Internet]. 2024 Nov. 16 [cited 2025 Apr. 25];53(4):e024060293. Available from: https://revmedmilitar.sld.cu/index.php/mil/article/view/60293

Issue

Section

Research Article