Bioinsecticidal potential of medicinal plants in the control of Aedes aegypti
Keywords:
Aedes aegypti, dengue, mosquito vectors, medicinal plantsAbstract
Introduction: Dengue is a highly prevalent disease, largely due to the resistance of its vector, Aedes aegypti, to synthetic insecticides. Therefore, medicinal plants emerge as a promising alternative for its control.
Objective: To describe information on the bioinsecticidal potential of medicinal plants for the control of Aedes aegypti.
Methods: A review was conducted in Scielo, Lilacs, Dialnet and Scopus, using the terms “larvicidal activity” OR “biocidal activity” OR “insecticidal activity” AND “Aedes aegypti”. Only original articles from the last 5 years with open access, in Spanish and English, were selected.
Development: The use of extracts and essential oils from medicinal plants in the control of Aedes aegypti is highlighted, which evaluate the vector at different stages. Phytochemical compounds, such as terpenes, sesquiterpenes and phenolic compounds, showed high bioinsecticidal efficacy, supported by mortality rates and relevant lethal concentrations. The synergistic action between these components positions medicinal plants as sustainable alternatives to conventional insecticides. Although the results are based on in vitro studies, they consolidate a scientific basis for the development of ecological vector control strategies.
Conclusions: Medicinal plants represent a promising resource for the control of Aedes aegypti, with evidence of their effectiveness and sustainability. However, their application in field conditions needs to be validated for integration into vector control programmes.
Downloads
References
1. Priya S, Vasantha-Srinivasan P, Altemimi A, Keerthana R, Radhakrishnan N, Senthil-Nathan S, et al. Bioactive molecules derived from plants in managing dengue vector Aedes aegypti (Linn.) [Internet]. Molecules. 2023 [acceso: 04/11/2024]; 28(5):e2386. Disponible en: https://www.mdpi.com/1420-3049/28/5/2386
2. Brady O, Hay S. The global expansion of dengue: how Aedes aegypti mosquitoes enabled the first pandemic arbovirus [Internet]. Annu Rev Entomol. 2020 [acceso: 04/11/2024]; 65(1):191-208. Disponible en: https://pubmed.ncbi.nlm.nih.gov/31594415/
3. Novelo M, Dutra H, Metz H, Jones M, Sigle L, Frentiu F, et al. Dengue and chikungunya virus loads in the mosquito Aedes aegypti are determined by distinct genetic architectures [Internet]. PLoS pathogens. 2023 [acceso: 04/11/2024]; 19(4):e1011307. Disponible en: https://journals.plos.org/plospathogens/article?id=10.1371/jo-urnal.ppat.1011307#:~:text=Heritabilities%20were%20signific-ant%2C%20but%20higher,viruses%20using%20distinct%20-genetic%20mechanisms .
4. Carod-Artal F. Complicaciones neurológicas asociadas a la infección por el virus del dengue [Internet]. Rev neurol. 2019 [acceso: 04/11/2024]; 69(3):113-22. Disponible en: https://neurologia.com/articulo/2019140
5. Londhey V, Agrawal S, Vaidya N, Kini S, Shastri J, Sunil S. Dengue and Chikungunya virus co-infections: the inside story [Internet]. The Journal of the Association of Physicians of India. 2016 [acceso: 04/11/2024]; 64(3):36-40. Disponible en: https://europepmc.org/article/med/27731556
6. Powell J, Tabachnick W. History of domestication and spread of Aedes aegypti -a review [Internet]. Mem Inst Oswaldo Cruz. 2013 [acceso: 04/11/2024]; 108(suppl 1):11-7. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4109175/
7. Organización Mundial de la Salud. Dengue-Situación actual. Ginebra: WHO; [Internet]. 2023. [acceso: 04/11/2024]. Disponible en: https://www.who.int/es/emergencies/disease-outbreak-news/item/2023-DON498
8. Ministerio de Salud del Perú. Situación de dengue en el Perú. Semana 02-2022 [Internet]. Boletín Epidemiológico del Perú. 2022. [acceso: 04/11/2024]. Disponible en: https://www.dge.gob.pe/epipublic/uploads/boletin/boletin_2022-2_11_195328_3.pdf
9. Copaja-Corzo C, Flores-Cohaila J, Tapia-Sequeiros G, Vilchez-Cornejo J, Hueda-Zavaleta M, Vilcarromero S, et al. Risk factors associated with dengue complications and death: A cohort study in Peru [Internet]. Plos one. 2024 [acceso: 04/11/2024]; 19(6):e0305689. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pon-e.0305689
10. Rao M, Kumar R. Lethal efficacy of phytochemicals as sustainable sources of insecticidal formulations derived from the leaf extracts of Indian medicinal plants to control Dengue and Zika vector, Aedes aegypti (Dipetra: Culicide) [Internet]. International research Journal of Environmental Science. 2020 [acceso: 04/11/2024]; 9(2):1-9. Disponible en: https://www.isca.me/IJENS/Archive/v9/i3/6.ISCA-IRJEvS-2019-103.pdf
11. Santos L, Brandao L, da Costa A, Martins R, Rodrigues A, de Almeida S. The potentiality of plant species from the lamiaceae family for the development of herbal medicine in the control of diseases transmitted by Aedes aegypti [Internet]. Pharmacognosy Reviews. 2022 [acceso: 04/11/2024]; 16(31):41. Disponible en: https://phcogrev.com/article/2022/16/31/105530phrev2022167
12. Granados-Montelongo J, Nuñez-Colima J, Trujillo-Zacarías I, Cano-del Toro J, Chan-Chable R, Hidalgo-de León A. Extracto de Acacia farnesiana para el control de larva de Aedes aegypti [Internet]. Nova Scientia. 2021 [acceso: 04/11/2024]; 13(27):1-20. Disponible en: https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-07052021000200107
13. Zarza-Albarrán M, Olmedo-Juárez A, Rojo-Rubio R, Mendoza-de Gives P, González-Cortazar M, Tapia-Maruri D, et al. Galloyl flavonoids from Acacia farnesiana pods possess potent anthelmintic activity against Haemonchus contortus eggs and infective larvae [Internet]. J Ethnopharmacol. 2020 [acceso: 04/11/2024]; 249:112402. Disponible en: https://www.sciencedirect.com/science/article/pii/S037887411-8336894
14. Olmedo-Juárez A, Zarza-Albarrán M, Rojo-Rubio R, Zamilpa A, González-Cortazar M, Mondragón-Ancelmo J, et al. Acacia farnesiana pods (plant: Fabaceae) possesses anti-parasitic compounds against Haemonchus contortus in female lambs [Internet]. Exp Parasitol. 2020 [acceso: 04/11/2024]; 218:107980. Disponible en: https://www.sciencedirect.com/science/article/pii/S001448941-9305624
15. Sari M, Susilowati R, Timotius K. Larvicidal Activity of Ethyl Acetate Leaf Extract of Aegle marmelos (L.) Correa Against Aedes aegypti [Internet]. HAYATI Journal of Biosciences.2023 [acceso: 04/11/2024]; 30(4):643-52. Disponible en: https://journal.ipb.ac.id/index.php/hayati/article/view/38338
16. Dass K, Sujitha S, Mariappan P. Larvicidal activity of selected medicinal plants against dengue vector Aedes aegypti [Internet]. Int J Mosq Res. 2022 [acceso: 04/11/2024]; 9(1):110-3. Disponible en: https://www.dipterajournal.com/archives/2022/9/1/B/9-1-9
17. Sanabria-Jimenez S, Lozano L. Larvicidal activity of Bacillus thuringiensis subsp. israelensis (Bacillaceae) and plant extracts for the biological control of Aedes aegypti (Culicidae) [Internet]. Actual Biol. 2022 [acceso: 04/11/2024]; 44(117):1-8. Disponible en: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0304-35842022000200005&lng=en&nrm=iso&tlng=en
18. Bobadilla M, Reyes S. Efecto tóxico de los extractos de semillas de Annona muricata potenciados con dimetilsulfóxido sobre larvas IV y pupas de Aedes aegypti[Internet]. Rev peru biol. 2020 [acceso: 04/11/2024]; 27(2):215-24. Disponible en: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1727-99332020000200215
19. Dey P, Mandal S, Goyary D, Verma A. Larvicidal property and active compound profiling of Annona squamosa leaf extracts against two species of diptera, Aedes aegypti and Anopheles stephensi[Internet]. J Vector Borne Dis. 2023 [acceso: 04/11/2024]; 60(4):401-13. Disponible en: https://journals.lww.com/jvbd/fulltext/2023/60040/larvicidal_pr-operty_and_active_compound_profiling.8.aspx
20. Manzano P, García O, Malusín J, Villamar J, Quijano M, Viteri R. Larvicidal activity of ethanolic extract of Azadirachta indica against Aedes aegypti larvae [Internet]. Rev Fac Nac Agron Medellín. 2020 [acceso: 04/11/2024]; 73(3):9315-20. Disponible en: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0304-28472020000309315&lng=en&nrm=iso&tlng=en
21. Imakwu C, Ubaka U, Okoye J, Nzeukwu C, Okeke O, Idigo M, et al. Larvicidal Effect of Azadirachta indica Extract on Aedes aegypti in Nnamdi Azikiwe University Environment, Awka South Local Government Area of Anambra State [Internet]. South Asian Journal of Parasitology. 2024 [acceso: 04/11/2024]; 7(1):33-40. Disponible en: https://journalsajp.com/index.php/SAJP/article/view/169
22. Silva J, Oliveira A, França L, da Cruz J, Amaral A. Exploring the larvicidal and adulticidal activity against Aedes aegypti of essential oil from Bocageopsis multiflora[Internet]. Molecules. 2024 [acceso: 04/11/2024]; 29(10):e2240. Disponible en: https://www.mdpi.com/1420-3049/29/10/2240
23. Castillo-Carrillo P, Cornejo R, Solís J, Gómez M. Actividad ovicida-larvicida, larvicida y repelencia del aceite esencial del "palo santo" Bursera graveolens sobre Aedes aegypti[Internet]. Manglar. 2022 [acceso: 04/11/2024]; 19(3):263-9. Disponible en: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S2414-10462022000300263
24. Leyva M, del Carmen M, Montada D, Payroll J, Scull R, Morejón G. Aceites esenciales de Eucalyptus globulus (Labill) y Bursera graveolens (Kunth) Triana & Planch para el control de mosquitos de importancia médica [Internet]. The Biologist. 2020 [acceso: 04/11/2024]; 18(2):239-50. Disponible en: https://revistas.unfv.edu.pe/rtb/article/view/804
25. Azevedo F, Bezerra L, Silva T, Silva R, Feitosa J. Larvicidal activity of vegetable oils against Aedes aegypti larvae [Internet]. Rev Fac Nac Agron Medellín. 2021 [acceso: 04/11/2024]; 74(2):9563-70. Disponible en: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0304-28472021000209563
26. Oliveira A, Fernandes C, Santos L, Candido A, Magalhães L, Miranda M. Chemical composition, in vitro larvicidal and antileishmanial activities of the essential oil from Citrus reticulata Blanco fruit peel [Internet]. Braz J Biol. 2023 [acceso: 04/11/2024]; 83:e247539. Disponible en: https://www.scielo.br/j/bjb/a/hBJ565KPbjTm3zqJTzsrHPp/
27. Barros P, de Assunção G, Oliveira G, Souza de Lima H, Fernandes de Araújo J, Fonseca E, et al. Chemical composition and larvicidal activity of essential oil of the bark of Citrus sinensis (L.) Osbeck [Internet]. Rev colomb cienc quim farm. 2021 [acceso: 04/11/2024]; 50(1):48-60. Disponible en: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0034-74182021000100048
28. Arias-Cedeño Q, Leyva-Silva M, Avila-Bornot E, Feist H, Langer P. Caracterización del aceite esencial de Curcuma longa L. Y actividad insecticida frente Aedes aegypti[Internet]. Rev Cub Quim. 2020 [acceso: 04/11/2024]; 32(3):378-89. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2224-54212020000300378
29. Pereira A, de Sousa B, Rosa P, Lages M, Silva F, de Alencar L, et al. Larvicidal effect of the essential oil of Curcuma xanthorrhiza (ginger java) for Aedes aegypti [Internet]. Research, Society and Development. 2022 [acceso: 04/11/2024]; 11(15):e36785. Disponible en: https://rsdjournal.org/index.php/rsd/article/view/36785
30. Cansian R, Staudt A, Bernardi J, Puton B, Oliveira D, De Oliveira J, et al. Toxicity and larvicidal activity on Aedes aegypti of citronella essential oil submitted to enzymatic esterification [Internet]. Braz J Biol. 2021 [acceso: 04/11/2024]; 83:e244647. Disponible en: https://www.scielo.br/j/bjb/a/gCf6kRQHZrzH8ZHQxkGy5nJ/
31. Martins S, Cavalcante K, de Mesquita R, Brandão C, Godinho A, Silva L, et al. Chemical profiling of Dizygostemon riparius (Plantaginaceae) plant extracts and its application against larvae of Aedes aegypti L. (Diptera: Culicidae) [Internet]. Acta Tropica. 2023 [acceso: 04/11/2024]; 237:106706. Disponible en: https://www.sciencedirect.com/science/article/pii/S0001706X220-03989
32. Marston A, Kissling J, Hostettmann K. A rapid TLC bioautographic method for the detection of acetylcholinesterase and butyrylcholinesterase inhibitors in plants [Internet]. Phytochem Anal. 2002 [acceso: 04/11/2024]; 13(1):51-4. Disponible en: https://pubmed.ncbi.nlm.nih.gov/11899607/
33. De-Campos-Bortolucci W, Marko-de-Oliveira H, Roque-Oliva L, Gonçalves J, Piau-Júnior R, Mariano-Fernandez C, et al. Crude extract of the tropical tree Gallesia integrifolia (Phytolaccaceae) for the control of Aedes aegypti (Diptera: Culicidae) larvae [Internet]. Rev biol trop. 2021 [acceso: 04/11/2024]; 69(1):153-69. Disponible en: https://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0034-77442021000100153&lng=en&nrm=iso&tlng=en
34. Fernandez C, Lorenzetti F, Kleinubing S, de Andrade J, de Campos W, Gonçalves J, Dias B, et al. Composición química y actividad insecticida del aceite esencial de Garcinia gardneriana (Planchon & Triana) Zappi (Clusiaceae) [Internet]. Bol Latinoam Caribe Plant Med Aromat. 2021 [acceso: 04/11/2024]; 20(5):503-14. Disponible en: https://blacpma.ms-editions.cl/index.php/blacpma/article/view/200
35. Trindade F, Facundo V, Silva A. Atividade inseticida do bacupari ( Garcinia gardneriana - Clusiaceae) sobre os mosquitos Anopheles darlingi e Aedes aegypti (Diptera: Culicidae) [Internet]. En: Silveira M, da Silva E, Lima R. Biodiversidade e Biotecnologia no Brasil 2. Rio Branco: Stricto Sensu; 2020. p. 102-116 [acceso: 04/11/2024]. Disponible en: https://www.researchgate.net/publication/345980441_ATIVIDADE-_INSETICIDA_DO_BACUPARI_Garcinia_gardneriana_-_Clusiaceae_SOBRE_OS_MOSQUITOS_Anopheles_darlingi_e_Aede-s_aegypti_Diptera_Culicidae
36. Álvarez-Valverde V, Rodríguez G, Argüello-Vargas S. Insecticidal activity of ethanolic plant extracts on Aedes aegypti larvae [Internet]. Uniciencia. 2023 [acceso: 04/11/2024]; 37(1):319-29. Disponible en: https://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S2215-34702023000100319
37. Rodzay R, Zuharah W. The determination of effective concentration of acethonilic Ipomoea cairica leaves extract against laboratory and field strains of Aedes albopictus and Aedes aegypti mosquito larvae [Internet]. Trop Biomed. 2021 [acceso: 04/11/2024]; 38(3):446-52. Disponible en: https://pubmed.ncbi.nlm.nih.gov/34608118/
38. Coulibaly F, Rossignol M, Haddad M, Carrasco D, Azokou A, Valente A, et al. Biological effects of Lippia alba essential oil against Anopheles gambiae and Aedes aegypti [Internet]. Sci Rep.2024 [acceso: 04/11/2024]; 14(1):3508. Disponible en: https://www.nature.com/articles/s41598-024-52801-1#citeas
39. Ríos N, Stashenko E, Duque J. Evaluation of the insecticidal activity of essential oils and their mixtures against Aedes aegypti (Diptera: Culicidae) [Internet]. Revista Brasileira de Entomología. 2017 [acceso: 04/11/2024]; 61(4):307-11. Disponible en: https://www.sciencedirect.com/science/article/pii/S008556261-730016X?via%3Dihub
40. Mituiassu L, Serdeiro M, Vieira R, Oliveira L, Maleck M. Momordica charantia L. extracts against Aedes aegypti larvae [Internet]. Braz J Biol. 2022 [acceso: 04/11/2024]; 82: e236498. Disponible en: https://www.scielo.br/j/bjb/a/ZDTLdCVfgQfVRRQkRftdhLn/
41. Anindita R, Mayasari E, Prastiwi A, Alamsyah R, Inggraini M. Bioactivity Test of Bitter Melon ( Momordica charantia L.) Ethanol Extract As Larvacide on Aedes sp and Culex sp [Internet]. Indonesian Journal of Biology Education. 2022 [acceso: 04/11/2024]; 5(1):14-21. Disponible en: https://jurnal.untidar.ac.id/index.php/ijobe/article/view/6028/2558
42. Truong N, Dung V, Ngan T, Tuong N, Ajani I. (2023). Essential Oil Constituent, Antimicrobial Activity, and Mosquito Larvicidal Activity of Murraya glabra (Guillaumin) Swingle from Vietnam [Internet]. Records of Natural Products.2023 [acceso: 04/11/2024]; 17(5):938-46. Disponible en: https://science.vinhuni.edu.vn/science/article.aspx?l=0&bb=61-9677&hs=2024
43. Mahendran G, Vimolmangkang S. Chemical compositions, antioxidant, antimicrobial, and mosquito larvicidal activity of Ocimum americanum L. and Ocimum basilicum L. leaf essential oils [Internet]. BMC Complement Med Ther.2023 [acceso: 04/11/2024]; 23(1):390. Disponible en: https://link.springer.com/article/10.1186/s12906-023-04214-2#citeas
44. Ramachandran M, Deepika N, Jayakumar M. Toxicity of Ocimum americanum L. extracts against Aedes aegypti larvae (Diptera: Culicidae) and their impact on insecticide resistance [Internet]. Arch Insect Biochem Physiol. 2023 [acceso: 04/11/2024]; 113(1):e21961. Disponible en: https://pubmed.ncbi.nlm.nih.gov/36089651/
45. Botelho A, Ferreira O, de Oliveira S, Cruz J, Chaves S, do Prado A, et al. Studies on the phytochemical profile of Ocimum basilicum var. minimum (L.) Alef. essential oil, its larvicidal activity and in silico interaction with acetylcholinesterase against Aedes aegypti (Diptera: Culicidae) [Internet]. Int J Mol Sci. 2022 [acceso: 04/11/2024]; 23(19):11172. Disponible en: https://pubmed.ncbi.nlm.nih.gov/36232474/
46. Gomes P, Marinho S, Everton G, Silva E, Fontenele M, da Silva Lyra W, et al. Composición química y actividad larvicida del aceite esencial de hojas de Pimenta dioica[Internet]. Bol Latinoam Caribe Plant Med Aromat. 2022 [acceso: 04/11/2024]; 21(2):207-14. Disponible en: https://www.blacpma.ms-editions.cl/index.php/blacpma/article/view/230
47. Martins T, Everton G, Rosa P, Arruda M, da Silva L, Fonseca D. Atividade larvicida do óleo essencial de Pimenta dioica Lindl. frente las larvas do mosquito Aedes aegypti [Internet]. Research, Society and Development . 2020 [acceso: 04/11/2024]; 9(8):e5518. Disponible en: https://rsdjournal.org/index.php/rsd/article/view/5518
48. Fernandez C, Lorenzetti F, de Souza Lima M, Kleinubing S, de Campos Bortolucci W, de Andrade J, et al. Actividad larvicida de piperovatina y extracto de diclorometano de las raíces de Piper corcovadensis contra mosquitos vectores del dengue Aedes aegypti L [Internet]. Bol Latinoam Caribe Plant Med Aromat. 2020 [acceso: 04/11/2024]; 19(1):142-8. Disponible en: https://blacpma.ms-editions.cl/index.php/blacpma/article/view/19
49. de Lima B, da Silva M, Pimentel C, da Rosa S, de Oliveira J, Navarro D, et al. Oviposition deterrence, larvicidal activity and docking of ß-germacrene-D-4-ol obtained from leaves of Piper corcovadensis (Piperaceae) against Aedes aegypti [Internet]. Industrial Crops and Products . 2022 [acceso: 04/11/2024]; 182:114830. Disponible en: https://www.sciencedirect.com/science/article/pii/S09266690220-03132?via%3Dihub
50. Castillo-Morales R, Duque J. Dissuasive and biocidal activity of Salvia officinalis (Lamiaceae) with induction of malformations in Aedes aegypti (Diptera: Culicidae) [Internet]. Rev Colomb Entomol. 2020 [acceso: 04/11/2024]; 46(2):e7683. Disponible en: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-04882020000200007
51. Castillo-Morales R, Otero A, Mendez-Sanchez S, Da Silva M, Stashenko E, Duque J. Mitochondrial affectation, DNA damage and AChE inhibition induced by Salvia officinalis essential oil on Aedes aegypti larvae [Internet]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 2019 [acceso: 04/11/2024]; 221:29-37. Disponible en: https://www.sciencedirect.com/science/article/pii/S153204561-8303156?via%3Dihub
52. Huong L, Huong T, Huong N, Hung N, Dat P, Luong N, et al. Composición química y actividad larvicida de aceites esenciales de Zingiber montanum (J. Koenig) Link ex. A. Dietr. contra tres vectores de mosquitos [Internet]. Bol Latinoam Caribe Plant Med Aromat. 2020 [acceso: 04/11/2024]; 19(6):569-79. Disponible en: https://blacpma.ms-editions.cl/index.php/blacpma/article/view/74
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Christhian Alexander Alvia-Saldarriaga, Camila Alexandra Reyes-Tello, Héctor Alexander Vilchez-Cáceda

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who have publications with this Journal accept the following terms:
- The authors will retain their copyright and guarantee the Journal the right of first publication of their work, which will simultaneously be subject to the Creative Commons Attribution License. The content presented here can be shared, copied and redistributed in any medium or format; Can be adapted, remixed, transformed or created from the material, using the following terms: Attribution (giving appropriate credit to the work, providing a link to the license, and indicating if changes have been made); non-commercial (you cannot use the material for commercial purposes) and share-alike (if you remix, transform or create new material from this work, you can distribute your contribution as long as you use the same license as the original work).
- The authors may adopt other non-exclusive license agreements for the distribution of the published version of the work (for example: depositing it in an institutional electronic archive or publishing it in a monographic volume) as long as the initial publication in this Journal is indicated.
- Authors are allowed and recommended to disseminate their work through the Internet (e.g., in institutional electronic archives or on their website) before and during the submission process, which can produce interesting exchanges and increase citations. of the published work.