Hyperimmune gammaglobulin and its application in the COVID-19 pandemic
Keywords:
antibodies, communicable diseases, convalescent plasma therapy, COVID-19, immunity, neutralizingAbstract
Introduction: Immunoglobulins are effector molecules of the humoral immune response, used in the treatment of infectious diseases. Due to its antiviral effect, it was used in the treatment of the disease caused by SARS-CoV-2. A search was carried out in the databases for articles on the use of intravenous immunoglobulins in SARS-CoV-2 infection. PubMed/Medline, Scopus, Scielo and Lilacs, and through the Google academic search engine, in Spanish, English and Portuguese.
Objectives: Analyze the use of intravenous immunoglobulins in SARS-CoV-2 infection.
Development: Intravenous immunoglobulins have significant levels of antibodies against human pathogens and can be used to treat a variety of infectious diseases, as well as diseases of unknown etiology. This therapy, when administered during the course of the disease (within 72 hours of symptom onset) and with high titers (> 1:160) of anti-SARS-CoV-2 neutralizing antibodies, is associated with clinical benefit.
Conclusions: Intravenous immunoglobulins are effective in different diseases due to their immunomodulatory, antiviral and anti-inflammatory properties. The main adverse reactions are related to high infusion rate and low purification. High-titer hyperimmune gamma preparations and neutralizing preparations administered in early stages of infection favor clinical improvement and hospital stay.
Downloads
References
Yu Z, Lennon VA. Mechanism of intravenous immune globulin therapy in antibody mediated autoimmune diseases [Internet]. N Engl J Med. 1999 [acceso: 29/07/2024]; 340(3): 227-8. Disponible en: https://www.nejm.org/doi/full/10.1056/NEJM199901213400311
Spellberg B. Mechanism of intravenous immune globulin therapy [Internet]. N Engl J Med. 1999 [acceso: 29/07/2024]; 341(1):57-8. Disponible en: https://www.nejm.org/doi/full/10.1056/NEJM199907013410115
Ballow M, Nelson R. Immunopharmacology: immunomodulation and immunotherapy [Internet]. JAMA. 1997 [acceso: 29/07/2024]; 278(22):2008-17. Disponible en: https://pubmed.ncbi.nlm.nih.gov/9396664/
García Merino A. Monoclonal antibodies. Basic features [Internet]. Neurol Engl Ed. 2011 [acceso: 20/07/2024]; 26(5):301-6. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S2173580811700633
Noda Albelo AL, Vidal Tallet LA, Rodríguez Ramos B. Aplicaciones terapias de las inmunoglobulinas humanas en Pediatría. Rev Cuba Pediatría [Internet]. 2013 [acceso: 29/07/2024]; 85:230-41. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0034-75312013000200010&nrm=iso
Colsky AS. Intravenous immunoglobulin in autoimmune and inflammatory dermatoses. A review of proposed mechanisms of action and therapeutic applications [Internet]. Dermatol Clin. 2000 [acceso: 29/07/2024]; 18(3):447-57. Disponible en: https://pubmed.ncbi.nlm.nih.gov/10943540/
Hung IF, To KK, Lee C-K, Lee K-L, Chan K, Yan W-W, et al. Convalescent plasma treatment reduced mortality in patients with severe pandemic influenza A (H1N1) 2009 virus infection [Internet]. Clin Infect Dis OffPubl Infect Dis Soc Am. 2011 [acceso: 29/07/2024]; 52(4):447-56. Disponible en: https://pubmed.ncbi.nlm.nih.gov/21248066/
Casadevall A, Joyner MJ, Pirofski L-A. A Randomized Trial of Convalescent Plasma for COVID-19-Potentially Hopeful Signals [Internet]. JAMA. 2020 [acceso: 29/07/2024]; 324(5):455-7. Disponible en: https://pubmed.ncbi.nlm.nih.gov/32492105/
Casadevall A, Pirofski L-A. The convalescent sera option for containing COVID-19 [Internet]. J Clin Invest. 2020 [acceso: 29/07/2024]; 130(4):1545-8. Disponible en: https://pubmed.ncbi.nlm.nih.gov/32167489/
Vandeberg P, Cruz M, Diez JM, Merritt WK, Santos B, Trukawinski S, et al. Production of anti-SARS-CoV-2 hyperimmune globulin from convalescent plasma [Internet]. Transfusion. 2021 [acceso: 29/07/2024]; 61(6):1705-9. Disponible en: https://pubmed.ncbi.nlm.nih.gov/33715160/
Perricone C, Triggianese P, Bursi R, Cafaro G, Bartoloni E, Chimenti MS, et al. Intravenous Immunoglobulins at the Crossroad of Autoimmunity and Viral Infections [Internet]. Microorganisms. 2021 [acceso: 29/07/2024]; 9(1):121. Disponible en: https://pubmed.ncbi.nlm.nih.gov/33430200/
Green M, Reyes J, Webber S, Rowe D. The role of antiviral and immunoglobulin therapy in the prevention of Epstein-Barr virus infection and post-transplant lymphoproliferative disease following solid organ transplantation [Internet]. Transpl Infect Dis. 2001 [acceso: 29/07/2024]; 3(2):97-103. Disponible en: https://pubmed.ncbi.nlm.nih.gov/11395975/
Imashuku S. Treatment of Epstein-Barr virus-related hemophagocytic lymphohistiocytosis (EBV-HLH); update 2010 [Internet]. J Pediatr Hematol Oncol. 2011 [acceso: 29/07/2024]; 33(1):35-9. Disponible en: https://pubmed.ncbi.nlm.nih.gov/21088619/
Martínez Grau I. Inmunoglobulina intravenosa: sus aplicaciones [Internet]. Rev Cubana Investig Bioméd. 2003 [acceso: 29/07/2024]; 22:259-66. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-03002003000400007
Zheng K, Liao G, Lalu MM, Tinmouth A, Fergusson DA, Allan DS. A Scoping Review of Registered Clinical Trials of Convalescent Plasma for Accelerated Synthesis of Trial Evidence (FAST Evidence) [Internet]. Transfus Med Rev. 2020 [acceso: 29/07/2024]; 34(3):158-64. Disponible en: https://pubmed.ncbi.nlm.nih.gov/32771272/
Senefeld JW, Franchini M, Mengoli C, Cruciani M, Zani M, Gorman EK, et al. COVID-19 Convalescent Plasma for the Treatment of Immunocompromised Patients: A Systematic Review and Meta-analysis [Internet]. JAMA Netw Open. 2023 [acceso: 29/07/2024]; 6(1):e2250647. Disponible en: https://pubmed.ncbi.nlm.nih.gov/36633846/
Castillo Belen JR, Castellanos Becerril ME, CadizLahens A. Capacidad opsonofagocítica de la inmunoglobulina endovenosa cubana (Intacglobín) [Internet]. 1999; 3:18-23. Disponible en: https://www.imbiomed.com.mx/articulo.php?id=8773
Porter RR. Structural studies of immunoglobulins [Internet]. Science. 1973 [acceso: 29/07/2024]; 180(4087):713-6. Disponible en: https://pubmed.ncbi.nlm.nih.gov/4122075/
Natvig JB, Kunkel HG. Human immunoglobulins: classes, subclasses, genetic variants, and idiotypes [Internet]. Adv Immunol. 1973 [acceso: 29/07/2024]; 16:1-59. Disponible en: https://pubmed.ncbi.nlm.nih.gov/4125921/
Arce Hernández AA, Merlín Linares JC, Villaescusa Blanco R, Padilla López M, González de Armas Y, Guerreiro Hernández AM. Purificación de IgG1, IgG2 e IgG3 mediante cromatografía de afinidad a partir de intacglobín [Internet]. Rev Cubana Hematol Inmunol Hemoter. 2001 [acceso: 29/07/2024]; 17(2):138-41. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-02892001000200009&lng=es
Romero C, Díez J-M, Gajardo R. Anti-SARS-CoV-2 antibodies in healthy donor plasma pools and IVIG products-an update [Internet]. Lancet Infect Dis. 2022 [acceso: 04/06/2024]; 22(1):19. Disponible en: https://pubmed.ncbi.nlm.nih.gov/34953544
Chen J-T, Ostermann M. Review of Anti-inflammatory and Antiviral Therapeutics for Hospitalized Patients Infected with Severe Acute Respiratory Syndrome Coronavirus 2. Crit Care Clin [Internet]. 2022 [acceso: 29/07/2024]; 38(3):587-600. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0749070422000094
Pati I, Cruciani M, Candura F, Massari MS, Piccinini V, Masiello F, et al. Hyperimmune Globulins for the Management of Infectious Diseases [Internet]. Viruses. 2023 [acceso: 29/07/2024]; 15(7):1543. Disponible en: https://pubmed.ncbi.nlm.nih.gov/37515229/
Park HJ, Alcover KC, Wang Q, Gada SM. SARS-CoV-2 Antibody Longitudinal Profile of Immune Globulin Preparations [Internet]. Mil Med. 2023 [acceso: 04/06/2024]; 188(7-8):1615-9. Disponible en: https://pubmed.ncbi.nlm.nih.gov/35769049
Focosi D, Franchini M, Tuccori M, Cruciani M. Efficacy of High-Dose Polyclonal Intravenous Immunoglobulin in COVID-19: A Systematic Review. Vaccines [Internet]. 2022 [acceso: 29/07/2024]; 10(1):94. Disponible en: https://www.mdpi.com/2076-393X/10/1/94
Weltzin R, Monath TP. Intranasal antibody prophylaxis for protection against viral disease [Internet]. Clin Microbiol Rev. 1999 [acceso: 29/07/2027]; 12(3):383-93. Disponible en: https://pubmed.ncbi.nlm.nih.gov/10398671/
Focosi D, Tuccori M, Franchini M. The Road towards Polyclonal Anti-SARS-CoV-2 Immunoglobulins (Hyperimmune Serum) for Passive Immunization in COVID-19 [Internet]. Life. 2021 [acceso: 29/07/2024];11(2):144. Disponible en: https://www.mdpi.com/2075-1729/11/2/144
Cádiz Lahens A, Borrero Larger H, Vallín García AE, Pérez Lavín L, Oria Gener J, Gil González G et al. Producción en Cuba de inmunoglobulina intravenosa hiperinmune ANTI-SARS-COV-2 con plasma de pacientes convalecientes [Internet]. Rev. CENIC Cienc. Bi. 2023 [acceso: 29/07/2024]; 54: 222-31. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2221-24502023000100222&lng=es
Valk SJ, Piechotta V, Kimber C, Chai KL, Monsef I, Doree C, et al. Convalescent plasma and hyperimmune immunoglobulin to prevent infection with SARS-CoV-2. Cochrane Haematology Group, editor. Cochrane Database Syst Rev [Internet]. 2021. DOI: 10.1002/14651858.CD013802
Blanco-Melo D, Nilsson-Payant BE, Liu W-C, Uhl S, Hoagland D, Møller R, et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19 [Internet]. Cell. 2020 [acceso: 4/06/2024]; 181(5):1036-45. Disponible en: https://pubmed.ncbi.nlm.nih.gov/32416070
Mendoza-Pinto C, García-Carrasco M, Munguía Realpozo P, Méndez-Martínez S. Therapeutic Options for the Management of Severe COVID-19: A Rheumatology Perspective [Internet]. Reumatol Clin. 2021 [acceso: 04/06/2024]; 17(8):431-6. Disponible en: https://pubmed.ncbi.nlm.nih.gov/38620231
Manganotti P, Garascia G, Furlanis G, Buoite Stella A. Efficacy of intravenous immunoglobulin (IVIg) on COVID-19-related neurological disorders over the last 2 years: an up-to-date narrative review [Internet]. Front Neurosci. 2023 [acceso: 04/06/2024]; 17:1159929. Disponible en: https://pubmed.ncbi.nlm.nih.gov/37179564
Carvelli J, Demaria O, Vély F, Batista L, ChouakiBenmansour N, Fares J, et al. Association of COVID-19 inflammation with activation of the C5a-C5aR1 axis [Internet]. Nature. 2020 [acceso: 04/06/2024]; 588(7836):146-50. Disponible en: https://pubmed.ncbi.nlm.nih.gov/32726800
Suárez-Reyes A, Villegas-Valverde CA. Implications of Low-grade Inflammation in SARS-CoV-2 Immunopathology [Internet]. MEDICC Rev. 2021 [acceso: 04/06/2024]; 23(2):42. Disponible en: https://pubmed.ncbi.nlm.nih.gov/33974614
Wilfong EM, Matthay MA. Intravenous immunoglobulin therapy for COVID-19 ARDS [Internet]. Lancet Respir Med. 2022 [acceso: 04/06/2024]; 10(2):123-5. Disponible en: https://pubmed.ncbi.nlm.nih.gov/34774186
Toth D. Neutralization Of SARS-CoV-2 Variants By A Human Polyclonal Antibody Therapeutic (COVID-HIG, NP-028) With High Neutralizing Titers To SARS-CoV-2 [Internet]. Immunology.2022 [acceso: 23/06/2024]. Disponible en: https://ouci.dntb.gov.ua/en/works/4NG56B8l/
Rodríguez de la Concepción ML, Ainsua-Enrich E, Reynaga E, Ávila-Nieto C, Santos JR, Roure S, et al. High-dose intravenous immunoglobulins might modulate inflammation in COVID-19 patients [Internet]. Life Sci Alliance. 2021 [acceso: 04/06/2024]; 4(9): e202001009. Disponible en: https://pubmed.ncbi.nlm.nih.gov/34321327
NIH. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines [Internet]. Bethesda (MD): National Institutes of Health (US); 2021. [acceso: 04/06/2024]. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK570371/
Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical Characteristics of Coronavirus Disease 2019 in China [Internet]. N Engl J Med. 2020 [acceso: 23/06/2024]; 382(18):1708-20. Disponible en: http://www.nejm.org/doi/10.1056/NEJMoa2002032
Polizzotto MN, Nordwall J, Babiker AG, Phillips A, Vock DM, Eriobu N, et al. Hyperimmune immunoglobulin for hospitalised patients with COVID-19 (ITAC): a double-blind, placebocontrolled, phase 3, randomised trial [Internet]. The Lancet. 2022 [acceso: 24/06/2024]; 399(10324):530-40. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0140673622001015
Reznik S, Tiwari A, Ashby C. Intravenous immunoglobulin: A potential treatment for the postacutesequelae of Bosn [Internet]. J Basic Med Sci. 2022 [acceso: 04/06/2024]; 22(4):660-4. Disponible en: https://pubmed.ncbi.nlm.nih.gov/35150477
Focosi D, Franchini M, Tuccori M, Cruciani M. Efficacy of High-Dose Polyclonal Intravenous Immunoglobulin in COVID-19: A Systematic Review [Internet]. Vaccines. 2022 [acceso: 23/05/2024]; 10(1):94. Disponible en: https://www.mdpi.com/2076-393X/10/1/94
Sullivan DJ, Franchini M, Joyner MJ, Casadevall A, Focosi D. Analysis of anti-SARS-CoV-2 Omicron-neutralizing antibody titers in different vaccinated and unvaccinated convalescent plasma sources [Internet]. Nat Commun. 2022 [acceso: 04/06/2024]; 13(1):6478. Disponible en: https://pubmed.ncbi.nlm.nih.gov/36309490
González JLB, González Gámez M, Mendoza Enciso EA, Esparza Maldonado RJ, Palacios DH, Campos SD, et al. Efficacy and safety of convalescent plasma and intravenous immunoglobulin in critically ill COVID-19 patients. A controlled clinical trial [Internet]. Infectious Diseases (except HIV/AIDS). 2021 [acceso: 23/06/2024]. Disponible en: http://medrxiv.org/lookup/doi/10.1101/2021.03.28.21254507
Ali S, Shalim E, Farhan F, Anjum F, Ali A, Uddin SM, et al. Phase II/III trial of hyperimmune antiCOVID-19 intravenous immunoglobulin (C-IVIG) therapy in severe COVID-19 patients: study protocol for a randomized controlled trial [Internet]. Trials. 2022 [acceso: 23/05/2024]; 23(1):932. Disponible en: https://trialsjournal.biomedcentral.com/articles/10.1186/s13063022-06860-2
Yap PL, McClelland DB. An evaluation of the safety of three intravenous immunoglobulin preparations in patients with primary hypogammaglobulinaemia. J Infect. [Internet] 1986 [acceso: 04/06/2024]; 12(1):5-10. Disponible en: https://pubmed.ncbi.nlm.nih.gov/3082994
Janiaud P, Axfors C, Schmitt AM, Gloy V, Ebrahimi F, Hepprich M, et al. Association of Convalescent Plasma Treatment With Clinical Outcomes in Patients With COVID-19: A Systematic Review and Meta-analysis [Internet]. JAMA. 2021 [acceso: 04/06/2024]; 325(12):1185-95. Disponible en: https://pubmed.ncbi.nlm.nih.gov/33635310
Tzilas V, Manali E, Papiris S, Bouros D. Intravenous Immunoglobulin for the Treatment of COVID-19: A Promising Tool [Internet]. Respir Int Rev Thorac Dis. 2020 [acceso: 04/06/2024]; 99(12):1087-9. Disponible en: https://pubmed.ncbi.nlm.nih.gov/33212437
Rahmel T, Kraft F, Haberl H, Achtzehn U, Brandenburger T, Neb H, et al. Intravenous IgM enriched immunoglobulins in critical COVID-19: a multicentre propensity-weighted cohort study [Internet]. Crit Care Lond Engl. 2022 [acceso: 04/06/2024]; 26(1):204. Disponible en: https://pubmed.ncbi.nlm.nih.gov/35799196
Liu J, Chen Y, Li R, Wu Z, Xu Q, Li Z, et al. Intravenous immunoglobulin treatment for patients with severe COVID-19: a retrospective multicentre study [Internet]. Clin Microbiol Infect Dis. 2021 [acceso: 04/06/2024]; 27(10):1488-93. Disponible en: https://pubmed.ncbi.nlm.nih.gov/34020032
Gröning R, Walde J, Ahlm C, Forsell MNE, Normark J, Rasmuson J. Intravenous immunoglobulin therapy for COVID-19 in immunocompromised patients: A retrospective cohort study [Internet]. Int J Infect Dis IJID Off Publ Int Soc Infect Dis. 2024 [acceso: 04/06/2024]; 144:107046. Disponible en: https://pubmed.ncbi.nlm.nih.gov/3 8615825
Billi B, Cholley P, Grobost V, Clément M, Rieu V, Le Guenno G, et al. Intravenous immunoglobulins for the treatment of prolonged COVID-19 in immunocompromised patients: a brief report [Internet]. Front Immunol. 2024 [acceso: 04/06/2024]; 15:1399180. Disponible en: https://pubmed.ncbi.nlm.nih.gov/38707896
Chan M, Linn MMN, O'Hagan T, Guerra-Assunção JA, Lackenby A, Workman S, et al. Persistent SARS-CoV-2 PCR Positivity Despite Anti-viral Treatment in Immunodeficient Patients [Internet]. J Clin Immunol. 2023 [acceso: 04/06/2024]; 43(6):1083-92. Disponible en: https://pubmed.ncbi.nlm.nih.gov/37148422
Rajabally YA. Immunoglobulin and Monoclonal Antibody Therapies in Guillain-Barré Syndrome [Internet]. Neurother J Am Soc Exp Neurother. 2022 [acceso: 04/06/2024]; 19(3):885-96. Disponible en: https://pubmed.ncbi.nlm.nih.gov/35648286
Cornblath DR, van Doorn PA, Hartung H-P, Merkies ISJ, Katzberg HD, Hinterberger D, et al. Randomized trial of three IVIg doses for treating chronic inflammatory demyelinating polyneuropathy [Internet]. Brain J Neurol. 2022 [acceso: 04/06/2024]; 145(3):887-96. Disponible en: https://pubmed.ncbi.nlm.nih.gov/35038723
Senefeld JW, Klassen SA, Ford SK, Wiggins CC, Bostrom BC, Thompson MA, et al. Therapeutic use of convalescent plasma in COVID-19 patients with immunodeficiency [Internet]. Infectious Diseases (except HIV/AIDS). 2020 [acceso: 24/06/2024]. Disponible en: http://medrxiv.org/lookup/doi/10.1101/2020.11.08.20224790
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Beatriz Amat Valdes, Anamary Suarez Reyes, Jorge Luis Bucarano Portelles
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who have publications with this Journal accept the following terms:
- The authors will retain their copyright and guarantee the Journal the right of first publication of their work, which will simultaneously be subject to the Creative Commons Attribution License. The content presented here can be shared, copied and redistributed in any medium or format; Can be adapted, remixed, transformed or created from the material, using the following terms: Attribution (giving appropriate credit to the work, providing a link to the license, and indicating if changes have been made); non-commercial (you cannot use the material for commercial purposes) and share-alike (if you remix, transform or create new material from this work, you can distribute your contribution as long as you use the same license as the original work).
- The authors may adopt other non-exclusive license agreements for the distribution of the published version of the work (for example: depositing it in an institutional electronic archive or publishing it in a monographic volume) as long as the initial publication in this Journal is indicated.
- Authors are allowed and recommended to disseminate their work through the Internet (e.g., in institutional electronic archives or on their website) before and during the submission process, which can produce interesting exchanges and increase citations. of the published work.