Changes in basal metabolic rate associated with depressive symptoms in Peruvian adults
Keywords:
basal metabolism, depression, logistic models, mental health, odds ratioAbstract
Introduction: Depression affects mental and organic homeostasis, leading to alterations in energy metabolism.
Objective: To determine the association between basal metabolic rate and depressive symptoms in Peruvian adults.
Methods: An analytical and cross-sectional study based on the 2022 Family Demographic and Health Survey. The study population consisted of 31,681 adults. Variables included the presence of depression, basal metabolic rate, and sex. Educational level, weight, and height were included for multivariate adjustment. The Student t-test was used for independent samples, and the odds ratio was adjusted using binary logistic regression.
Results: Low basal metabolic rate was higher in groups with moderate (women= 70.30%; men= 71.90%), moderately severe (women= 73.10%; men= 75.30%), and severe (women= 71.40%; men= 70%) depression. The average basal metabolic rate in women with depression was 1206 kilocalories/24 hours, while in women without depression it was 1295 kilocalories/24 hours (p< 0.001). In men with depression, the average basal metabolic rate was 1501 kilocalories/24 hours, while in men without depression it was 1598 kilocalories/24 hours (p< 0.001). In multivariate analysis, women with depressive symptoms had a Basal Metabolic Rate < 1400 kilocalories/24 hours 1.20 times more often than women without depressive symptoms (Odds Ratio= 1.195; 95% Confidence Interval= 1.121-1.197); p< 0.001). In men, the Basal Metabolic Rate < 1600 kilocalories/24 hours was 1.32 times more often (Odds Ratio= 1.319; 95% Confidence Interval= 1.278-1.357); p < 0.001).
Conclusions: Depressive symptoms are associated with alterations in the basal metabolic rate in Peruvian adults.
Downloads
References
1. Cavieres Á, López-Silva P. La depresión como enfermedad: en defensa del modelo biomédico en psiquiatría [Internet]. Rev Med Chil. 2021; 149(2):274-80. DOI: 10.4067/s0034-98872021000200274
2. Christensen MC, Wong CMJ, Baune BT. Symptoms of major depressive disorder and their impact on psychosocial functioning in the different phases of the disease: Do the perspectives of patients and healthcare providers differ? [Internet]. Front Psychiatry. 2020; 11:280. DOI: 10.3389/fpsyt.2020.00280
3. Smarr KL, Keefer AL. Measures of depression and depressive symptoms: Beck depression inventory-II (BDI-II), center for epidemiologic studies depression scale (CES-D), geriatric depression scale (GDS), hospital anxiety and depression scale (HADS), and patient health questionnaire-9 (PHQ-9) [Internet]. Arthritis Care Res (Hoboken). 2011; 63 Suppl 11(S11):S454-66. DOI: 10.1002/acr.20556
4. Dean J, Keshavan M. The neurobiology of depression: An integrated view [Internet]. Asian J Psychiatr. 2017; 27:101-11. DOI: 10.1016/j.ajp.2017.01.025
5. Chodavadia P, Teo I, Poremski D, Fung DSS, Finkelstein EA. Prevalence and economic burden of depression and anxiety symptoms among Singaporean adults: results from a 2022 web panel [Internet]. BMC Psychiatry. 2023; 23(1):104. DOI: 10.1186/s12888-023-04581-7
6. Kupcova I, Danisovic L, Klein M, Harsanyi S. Effects of the COVID-19 pandemic on mental health, anxiety, and depression [Internet]. BMC Psychol. 2023 [acceso: 16/09/2023]; 11(1):108-9. DOI: 10.1186/s40359-023-01130-5
7. COVID-19 Mental Disorders Collaborators. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic [Internet]. Lancet. 2021 [acceso: 16/09/2023]; 398(10312):1700-12. Disponible en: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(21)02143-7/fulltext
8. Cazal M, Bouzas Marins JC, Natali AJ, Vallejo Soto DF, Sillero-Quintana M. Efecto del ejercicio físico en la tasa metabólica en reposo: aplicación en el control de la obesidad [Internet]. Rev Andal Med Deport. 2019 [acceso: 16/09/2023]; (Avance Online):272-7. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=7159407
9. Liu T, Xu Y, Yi C-X, Tong Q, Cai D. The hypothalamus for whole-body physiology: from metabolism to aging [Internet]. Protein Cell. 2022; 13(6):394-421. DOI: 10.1007/s13238-021-00834-x
10. Simon JJ, Stopyra MA, Mönning E, Sailer S, Lavandier N, Kihm LP, et al. Neuroimaging of hypothalamic mechanisms related to glucose metabolism in anorexia nervosa and obesity [Internet]. J Clin Invest. 2020 [acceso: 16/09/2023]; 130(8):4094-103. Disponible en: https://www.jci.org/articles/view/136782
11. Espinoza García AS, Martínez Moreno AG, Reyes Castillo Z. Papel de la grelina y la leptina en el comportamiento alimentario: evidencias genéticas y moleculares [Internet]. Endocrinol Diabetes Nutr (Engl ). 2021 [acceso: 16/09/2023]; 68(9):654-63. Disponible en: https://www.sciencedirect.com/science/article/pii/S2530016421000471
12. Izquierdo AG, Crujeiras AB, Casanueva FF, Carreira MC. Leptin, obesity, and Leptin resistance: Where are we 25 years later? [Internet]. Nutrients. 2019 [acceso: 16/09/2023]; 11(11):2704. Disponible en: https://www.mdpi.com/2072-6643/11/11/2704
13. Zimmerman CA, Leib DE, Knight ZA. Neural circuits underlying thirst and fluid homeostasis [Internet]. Nat Rev Neurosci. 2017 [acceso: 16/09/2023]; 18(8):459-69. Disponible en: https://www.nature.com/articles/nrn.2017.71
14. Lee DH, Keum N, Hu FB, Orav EJ, Rimm EB, Willett WC, et al. Predicted lean body mass, fat mass, and all cause and cause specific mortality in men: prospective US cohort study [Internet]. BMJ. 2018 [acceso: 16/09/2023]; 362:k2575. Disponible en: https://www.bmj.com/content/362/bmj.k2575
15. Miller T, Mull S, Aragon AA, Krieger J, Schoenfeld BJ. Resistance training combined with diet decreases body fat while preserving lean mass independent of resting metabolic rate: A randomized trial [Internet]. Int J Sport Nutr Exerc Metab. 2018 [acceso: 16/09/2023]; 28(1):46-54. Disponible en: https://journals.humankinetics.com/view/journals/ijsnem/28/1/article-p46.xml
16. Olejnícková J, Forejt M, Cermáková E, Hudcová L. Factors influencing basal metabolism of Czechs of working age from South Moravia [Internet]. Cent Eur J Public Health. 2019 [acceso: 16/09/2023]; 27(2):135-40. Disponible en: https://cejph.szu.cz/pdfs/cjp/2019/02/09.pdf
17. Malik VS, Willet WC, Hu FB. Nearly a decade on - trends, risk factors and policy implications in global obesity [Internet]. Nat Rev Endocrinol. 2020 [acceso: 16/09/2023]; 16(11):615-6. Disponible en: https://www.nature.com/articles/s41574-020-00411-y
18. Villena Chávez JE. Prevalencia de sobrepeso y obesidad en el Perú [Internet]. Rev Peru Ginecol Obstet. 2018 [acceso: 16/09/2023]; 63(4):593-8. Disponible en: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S2304-51322017000400012
19. Al-Khatib Y, Akhtar MA, Kanawati MA, Mucheke R, Mahfouz M, Al-Nufoury M. Depression and metabolic syndrome: A narrative review [Internet]. Cureus. 2022; 14(2):e22153. DOI: 10.7759/cureus.22153
20. Ballestar-Tarín ML, Ibáñez-del Valle V, Mafla-España MA, Navarro-Martínez R, Cauli O. Salivary brain-derived neurotrophic factor and cortisol associated with psychological alterations in university students [Internet]. Diagnostics (Basel). 2024; 14(4):447. DOI: 10.3390/diagnostics14040447
21. Taylor VH, MacQueen GM. The role of adipokines in understanding the associations between obesity and depression [Internet]. J Obes. 2010; 2010:1-6. DOI: 10.1155/2010/748048
22. Blasco BV, García-Jiménez J, Bodoano I, Gutiérrez-Rojas L. Obesity and depression: Its prevalence and influence as a prognostic factor: A systematic review [Internet]. Psychiatry Investig. 2020; 17(8):715-24. DOI: 10.30773/pi.2020.0099
23. Luppino FS, de Wit LM, Bouvy PF, Stijnen T, Cuijpers P, Penninx BWJH, et al. Overweight, obesity, and depression: a systematic review and meta-analysis of longitudinal studies: A systematic review and meta-analysis of longitudinal studies [Internet]. Arch Gen Psychiatry. 2010 [acceso: 16/09/2023]; 67(3):220-9. Disponible en: https://jamanetwork.com/journals/jamapsychiatry/fullarticle/210608
24. Martina Chávez M, Amemiya Hoshi I, Suguimoto Watanabe SP, Arroyo Aguilar RS, Zeladita-Huaman JA, Castillo Parra H. Depresión en adultos mayores en el Perú: distribución geoespacial y factores asociados según ENDES 2018 - 2020 [Internet]. An Fac Med (Lima Peru : 1990). 2022 [acceso: 16/09/2023]; 83(3):180-7. Disponible en: https://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1025-55832022000300180
25. Huarcaya-Victoria J, De-Lama-Morán R, Quiros M, Bazán J, López K, Lora D. Propiedades psicométricas del Patient Health Questionnaire (PHQ-9) en estudiantes de medicina en Lima, Perú [Internet]. Rev Neuropsiquiatr. 2020 [acceso: 16/09/2023]; 83(2):72-8. Disponible en: https://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S0034-85972020000200072
26. Levis B, Benedetti A, Thombs BD, DEPRESsion Screening Data (DEPRESSD) Collaboration. Accuracy of Patient Health Questionnaire-9 (PHQ-9) for screening to detect major depression: individual participant data meta-analysis [Internet]. BMJ. 2019 [acceso: 16/09/2023]; 365:l1476. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30967483/
27. Dajpratham P, Pukrittayakamee P, Atsariyasing W, Wannarit K, Boonhong J, Pongpirul K. The validity and reliability of the PHQ-9 in screening for post-stroke depression [Internet]. BMC Psychiatry. 2020 [acceso: 16/09/2023]; 20(1):291. Disponible en: https://pubmed.ncbi.nlm.nih.gov/32517743/
28. Bendavid I, Lobo DN, Barazzoni R, Cederholm T, Coëffier M, de van der Schueren M, et al. The centenary of the Harris-Benedict equations: How to assess energy requirements best? Recommendations from the ESPEN expert group [Internet]. Clin Nutr. 2021 [acceso: 16/09/2023]; 40(3):690-701. Disponible en: https://www.sciencedirect.com/science/article/pii/S0261561420-306166
29. Bi X, Forde CG, Goh AT, Henry CJ. Basal metabolic rate and body composition predict habitual food and macronutrient intakes: Gender differences [Internet]. Nutrients. 2019;11(11):2653. DOI: 10.3390/nu11112653
30. Navarrete Mejia PJ, Parodi García JF, Vega García E, Pareja Cruz A, Benites Azabache JC, et al. Factores asociados al sedentarismo en jóvenes estudiantes de educación superior. Perú, 2017 [Internet]. Horiz méd. 2019 [acceso: 16/09/2023]; 19(1):46-52. Disponible en: https://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1727-558X2019000100008
31. Fernández-García JC, Cardona F, Tinahones FJ. Inflamación, obesidad y dieta mediterránea {Internet]. Rev Endocrinol Nutr. 2010[acceso: 13/05/2025];18(2):65-71. Disponible en: https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-11462010000200002
32. Cazal MDM, Bouzas Marins JC, Natali AJ, Vallejo Soto DF, Sillero-Quintana M. Efecto del ejercicio físico en la tasa metabólica en reposo: aplicación en el control de la obesidad {Internet]. Rev Andal Med Deport. 2019[acceso: 13/05/2025];12(3):272-7. Disponible en: http://dx.doi.org/10.33155/j.ramd.2017.10.004
33. Ortega FB, Ruiz JR, Labayen I, Lavie CJ, Blair SN. The Fat but Fit paradox: what we know and don't know about it {Internet]. Br J Sports Med. 2018[acceso: 13/05/2025];52(3):151-3. Disponible en: http://dx.doi.org/10.1136/bjsports-2016-097400
34.. Cortés Romero CE, Escobar Noriega A, Cebada Ruiz J, Soto Rodríguez G, Bilbao Reboredo T, Vélez Pliego M. Estrés y cortisol: implicaciones en la ingesta de alimento [Internet]. Rev cuba investig bioméd. 2018 [acceso: 16/09/2023]; 37(3):1-15. Disponible en: https://scielo.sld.cu/scielo.php?pid=S0864-03002018000300013&script=sci_arttext
35. Stetler C, Miller GE. Depression and hypothalamic-pituitary-adrenal activation: a quantitative summary of four decades of research. Psychosom Med [Internet]. 2011;73(2):114-26. Disponible en: http://dx.doi.org/10.1097/PSY.0b013e31820ad12b
36. Paddon-Jones D, Sheffield-Moore M, Creson DL, Sanford AP, Wolf SE, Wolfe RR, et al. Hypercortisolemia alters muscle protein anabolism following ingestion of essential amino acids [Internet]. Am J Physiol Endocrinol Metab. 2003[acceso: 13/05/2025];284(5):E946-53. Disponible en: http://dx.doi.org/10.1152/ajpendo.00397.2002
37. Romero Romero EE, Young J, Salado-Castillo R. Fisiología del estrés y su integración al sistema nervioso y endocrino [Internet]. Rev Med Cient. 2020 [acceso: 16/09/2023]; 32:61-70. Disponible en: https://revistamedicocientifica.org/index.php/rmc/article/view/535
38. Fernandes M, Mutch D, Leri F. The relationship between fatty acids and different depression-related brain regions, and their potential role as biomarkers of response to antidepressants [Internet]. Nutrients. 2017; 9(3):298. DOI: 10.3390/nu9030298
39. Zhang L, Sun H, Liu Z, Yang J, Liu Y. Association between dietary sugar intake and depression in US adults: a cross-sectional study using data from the National Health and Nutrition Examination Survey 2011-2018 [Internet]. BMC Psychiatry. 2024; 24(1)-20. DOI: 10.1186/s12888-024-05531-7
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Alberto Guevara Tirado

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who have publications with this Journal accept the following terms:
- The authors will retain their copyright and guarantee the Journal the right of first publication of their work, which will simultaneously be subject to the Creative Commons Attribution License. The content presented here can be shared, copied and redistributed in any medium or format; Can be adapted, remixed, transformed or created from the material, using the following terms: Attribution (giving appropriate credit to the work, providing a link to the license, and indicating if changes have been made); non-commercial (you cannot use the material for commercial purposes) and share-alike (if you remix, transform or create new material from this work, you can distribute your contribution as long as you use the same license as the original work).
- The authors may adopt other non-exclusive license agreements for the distribution of the published version of the work (for example: depositing it in an institutional electronic archive or publishing it in a monographic volume) as long as the initial publication in this Journal is indicated.
- Authors are allowed and recommended to disseminate their work through the Internet (e.g., in institutional electronic archives or on their website) before and during the submission process, which can produce interesting exchanges and increase citations. of the published work.