Considerations about the introduction of iMagis® software as a teaching aid in health sciences
Keywords:
artificial intelligence, diagnosis, teaching, therapeutics, prognosis, X-ray computed tomographyAbstract
Introduction: The technologies used in medical imaging diagnosis comprise two broad categories, depending on whether they require anatomical or functional details of the organs or tissues analyzed.
Objective: To assess the effectiveness of introducing iMagis® software as a teaching formative aid in health sciences.
Development: In addition to leveraging existing technological potential, it is necessary to incorporate iMagis® as a teaching aid in the training processes of medical, technology, and residency students in various medical and surgical specialties. In health sciences, it is essential to design methodologies that guide the use of the software, taking into account the gnoseological specificities of the programs and specializations in their training dynamics, in order to address the identified shortcomings in the preparation of future health professionals to interpret the images obtained which provide relevant elements for medical diagnosis.
Conclusion: It is considered appropriate to develop strategies to optimize the use of iMagis® software as a teaching aid for teaching purposes in various health science programs and residencies.
Downloads
References
1. Juárez Landín C, Mendoza Pérez MA, García Ibarra JRS, Sánchez Soto JM. Procesamiento digital de señales e imágenes médicas con propósito de diagnóstico para reducir riesgos en salud [Internet]. Ciencia Latina. 2024;8(5):2925-30. DOI: 10.37811/cl_rcm.v8i5.13751
2. Tripathi S, Sharma N. Computer-aided automatic approach for denoising of magnetic resonance images. Computer Methods in Biomechanics and Biomedical Engineering[Internet]. Imaging and Visualization. 2021; 9(6):707-16. DOI:10.1080/21681163.2021.1944914
3. Dalda Navarro JA, Navarro Martín MT, Negre Ferrer E, Negre Ferrer C, Navarro Martín AB, Dalda Navarro V. La revolución de la resonancia magnética en el diagnóstico de enfermedades neurológicas [Internet]. Revista Sanitaria de Investigación. 2024 [acceso: 10/11/2024]; 5(6): [aprox. 10 p]. Disponible en: https://revistasanitariadeinvestigacion.com/la-revolucion-de-la-resonancia-magnetica-en-el-diagnostico-de-enfermedades-neurologicas/
4. Dalda Navarro JA, Negre Ferre E, Negre Ferrer C, Navarro Martín AB, Navarro Martín MT, Dalda Navarro V. Impacto de las imágenes de alta resolución en la detección temprana de enfermedades renales [Internet]. Revista Sanitaria de Investigación. 2024 [acceso: 11/01/2025];5(7): [aporx. 10 p.] Disponisble en: https://dialnet.unirioja.es/servlet/articulo?codigo=9704229
5. González RC, Woods RE. Digital Image Processing [Internet]. Fourth Edition. Global Edition. New York N.Y.: Pearson Education Limited; 2018. Disponible en: https://www.cl72.org/090imagePLib/books/Gonzales,Woods-Digital.Image.Processing.4th.Edition.pdf
6. Brossard Alejo JS, Ronda Betancourt D, Artigas Fuente F, Núñez, Ferrer P, Cuetu Reyes A, Tasse Licea F, et al. Telemedicina. Con visión de futuro. Revista Avances médicos de Cuba. 1999; (3):20-2.
7. de Paiva LF, Boaro Carvalho JM., Santes Fernandes AG, da Silva Martins CM, Braz Junior G. Metodología Deep Features para Diagnóstico de Glaucoma [Internet]. Revista Brasileña de Desarrollo. 2020; 6(6):41048-60. DOI: 10.34117/bjdv6n6-589
8. Cruz Martínez I, González Oliva A, Machado Acuña. Consideraciones sobre la implementación del iMagis® para la interpretación de imágenes diagnósticas digitales con fines docentes en tecnología de la salud [Internet]. MEDISAN. 2013 [acceso: 05/04/2025];17(7):2080-3. Disponible en: https://www.redalyc.org/pdf/3684/368444994020.pdf
9. Daudinot López M, Miller Clemente RA. Una solución PACS cubana bajo software libre que sirve de plataforma a especializaciones médicas [Internet]. Revista Cubana de Informática Médica. 2016 [acceso: 05/05/2025]; 8(2):186-96. Disponible en: https://revinformatica.sld.cu/index.php/rcim/article/view/148
10. Guzmán Díaz C, Vega Aguilar DB. Sistema para el almacenamiento y transmisión de imágenes médicas, versión 3.0 [Internet]. Revista Cubana de Informática Médica. 2014 [acceso: 05/05/2025] 6(1):17-23. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1684-18592014000100003&lng=es
11. Carter C, Veale B. Digital Radiography and PACS.4th Edition. Mosby; 2022.
12. Yang L. DICOM Standard and Its Application in Radioinformatics[Internet]. International Journal of Computer Science and Information Technology. 2024 [acceso: 01/06/2025]; 2(1):384-90. Disponible en: https://wepub.org/index.php/IJCSIT/article/view/1009
13. Cabezas Salmon M, Rivero Cruz L, Licea Milán DV, Meriño Benavide F. La gestión del proyecto transversal de la Universidad de Oriente durante la pandemia de Covid-19 [Internet]. Revista Universidad y Sociedad. 2023 [acceso: 01/06/2025];15(2): 132-40. Disponible en: https://rus.ucf.edu.cu/index.php/rus/article/view/3613/3554
14. Mesa Pujals AA, Hernández Cortés KS, Montoya Pedrón A, Bolaños Vaillant S, Álvarez Guerra ED. Análisis de texturas homogéneas para la estimación volumétrica de la materia cerebral por tomografía computarizada [Internet]. Revista Cubana de Informática Médica. 2022 [acceso: 18/05/2024]; 14 (1):e512. Disponible en: https://revinformatica.sld.cu/index.php/rcim/article/view/512
15. Hernández-Cortés KS, Mesa-Pujals AA, García-Gómez O, Montoya Pedrón A. Brain morphometry in adult: volumetric visualization as a tool in image processing[Internet]. Rev . mex . neurocienc. 2021; 22(3):101-11. DOI:10.24875/rmn.20000074
16. Pérez-Careta E, Guzmán-Sepúlveda JR, Lozano-García JM, Torres-Cisneros M, Guzmán-Cabrera R. Clasificación de imágenes médicas mediante aprendizaje automático [Internet]. Dyna. 2022;97(1): 35-8. DOI: 10.6036/10117
17. Bhattacharya S, Reddy Maddikunta PK, Pham QV, Gadekallu TR, Krishnan S SR, Chowdhary CL, et al. Deep learning and medical image processing for coronavirus (COVID-19) pandemic: A survey [Internet]. Sustainable Cities and Society 2021;65:102589.DOI: 10.1016/j.scs.2020.102589
18. Litjens G, Kooi T, . Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis[Internet]. Medical Image Analysis. 2017; 42: 60-88. DOI: 10.1016/j.media.2017.07.005
19. Theriault-Lauzier P, Cobin D, Tastet O, Labrecque Langlais E, Taji B, Kang G, et al. A Responsible Framework for Applying Artificial Intelligence on Medical Images and Signals at the Point of Care: The PACS-AI Platform [Internet]. Can J Cardiol. 2024; 40(10):1828-40. DOI: 10.1016/j.cjca.2024.05.025
20. Dalda Navarro JA, Navarro Martín MT, Negre Ferrer E, Negre Ferrer C, Navarro Martín AB, Dalda Navarro V. El papel del técnico en imagen para el diagnóstico y medicina nuclear en situaciones de emergencia [Internet]. Revista Sanitaria de Investigación. 2024[acceso: 11/01/2025];5(3): [aprox. 10 p]. Disponible en: https://revistasanitariadeinvestigacion.com/el-papel-del-tecnico-en-imagen-para-el- diagnostico-y-medicina-nuclear-en-situaciones-de-emergencia/
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Julio Santiago Brossard Alejo , Natacha Lescaille Elías, Zenén Rodríguez Fernández, Adrián Alberto Mesa Pujals

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who have publications with this Journal accept the following terms:
- The authors will retain their copyright and guarantee the Journal the right of first publication of their work, which will simultaneously be subject to the Creative Commons Attribution License. The content presented here can be shared, copied and redistributed in any medium or format; Can be adapted, remixed, transformed or created from the material, using the following terms: Attribution (giving appropriate credit to the work, providing a link to the license, and indicating if changes have been made); non-commercial (you cannot use the material for commercial purposes) and share-alike (if you remix, transform or create new material from this work, you can distribute your contribution as long as you use the same license as the original work).
- The authors may adopt other non-exclusive license agreements for the distribution of the published version of the work (for example: depositing it in an institutional electronic archive or publishing it in a monographic volume) as long as the initial publication in this Journal is indicated.
- Authors are allowed and recommended to disseminate their work through the Internet (e.g., in institutional electronic archives or on their website) before and during the submission process, which can produce interesting exchanges and increase citations. of the published work.