Effect of the transgenic corn variety H-Ame15 on soil health and implications for food security

Authors

Keywords:

corn, genetically modified plants, microbial respiration, earthworms, toxicity tests

Abstract

Introduction: Evaluating soil fauna is key to understanding the impact of hybrid corn H-Ame15 on soil health, which is directly related to food quality and safety. Biodiversity degradation alters biogeochemical cycles, compromises crop nutrition, and can affect human health, making it essential to ensure safe food.

Objective: To analyze the effect of hybrid corn H-Ame15 and the insecticidal proteins Cry1Fa and Vip3A on soil bioindicators.

Methods: The assay was developed according to guideline 850.3200. Experimental groups: control (glucose), inactive and active proteins, plant residues from the hybrid and its non-transgenic counterpart, and two groups with earthworms (Eisenia andrei). The effects on the microbial community were assessed by quantifying CO2 on days 5, 28, 35, 42, and 63 (end of the assay). Earthworms were analyzed weekly for mortality and signs of toxicity.

Results: Proteins did not modify CO2 emissions. Hybrid maize showed lower respiration levels than conventional maize (-0.96 mg/g on day 63). The presence of earthworms favored respiratory function: values ​​of 20.22 and 18.54 mg/g for conventional and hybrid maize, respectively. No toxicity was evident in the earthworms.

Conclusion: Hybrid maize H-Ame15 and the proteins it expresses did not cause significant damage to soil health indicators, suggesting that there are no indirect risks to human health associated with its cultivation.

Downloads

Download data is not yet available.

References

1. Vidal Ledo MJ, Armenteros Vera I, Aparicio Suárez JL, Morales Suárez I, Portuondo Sao M. Una Salud [Internet]. Educación Médica Superior. 2021; 35(2):e2890. http://scielo.sld.cu/scielo.php?pid=S0864-21412021000200018&script=sci_arttext

2. Organisation for Economic Co-operation and Development, Safety Assessment of Transgenic Organisms in the Environment, Volume 10: OECD Consensus Document on Environmental Considerations for the Release of Transgenic Plants, Harmonisation of Regulatory Oversight in Biotechnology [Internet]. Paris: OECD; 2023. DOI: 10.1787/62ed0e04-en

3. Hilbeck A, Meyer H, Wynne B, Millstone E. GMO regulations and their interpretation: how EFSA’s guidance on risk assessments of GMOs is bound to fail [Internet]. Environ Sci Eur. 2020; 32:54. DOI: 10.1186/s12302-020-00325-6

4. Gallardo L. La biotecnología alimentaria: mitos, realidades y derecho. [Internet]. Corrientes: Editorial Moglia Ediciones. Corrientes; 2020. [acceso: 09/05/2023]. Disponible en:https://repositorio.unne.edu.ar/handle/123456789/29670

5. López Baroni M. Las tres Europas ante la encrucijada genómica [Internet]. Rev Bio Der. 2019. [acceso: 01/05/2023]; 47:77-92. Disponible en: http://www.mag.go.cr/rev_meso/v31n01_209.pdf

6. O´Farril LC. Transgénesis: una aproximación a sus riesgos y beneficios [Internet]. Acta méd centro. 2021 [acceso: 30/04/2023]; 15(1):[aprox. 13 pant.]. Disponible en: https://revactamedicacentro.sld.cu/index.php/amc/article/view/1239

7. Castro-Landin AL, Mayra Lisette ML, Luisa Anabel LA. El rol de los microorganismos en la fertilidad del suelo agrícola basado en una revisión de estudios recientes[Internet]. ISJ. 2023 [acceso: 18/05/2025]; 1(1): 26-37. Disponible en: https://innovasciencejournal.omeditorial.com/index.php/home/article/view/8

8. Téllez P. Obtención de cultivares transgénicos de maíz, resistentes a Spodoptera frugiperda y a glufosinato de amonio, alternativa para el alto rendimiento y conservación de insectos asociados. [Tesis Doctoral]. La Habana: Universidad Agraria; 2024. p. 204.

9. Centro Nacional de Toxicología. Instrucción al cliente maíz híbrido H-AME15. Serie de Instrucción al cliente: 07.La Habana: CENATOX; 2020.

10. Liu X, Liu S, Bai S, He K, Zhang Y, Dong H, et al. Toxicity of Cry- and Vip3Aa-Class Proteins and Their Interactions against Spodoptera frugiperda (Lepidoptera: Noctuidae) [Internet]. Toxins.2024; 16(4):193. DOI: 10.3390/toxins16040193

11. Thompson H, Elston Ch. What can laboratory studies tell us about potential effects of pesticides on non target arthropods populations and communities in the field? Integrated Environmental Assessment and Management [Internet]. 2024; 20(6): 2326–33. DOI: 10.1002/ieam.4987

12. FAO, ITPS, GSBI, CDB y CE. Estado del conocimiento sobre la biodiversidad del suelo - Situación, desafíos y potencialidades. Resumen para los formuladores de políticas [Internet]. Roma: FAO; 2021. DOI: 10.4060/cb1929es

13. Office of Chemical Safety and Pollution Prevention. OCSPP Ecological Effects Test Guidelines: Soil Microbial Community Toxicity Test [Internet]. OCSPP Guidelines 850.3200. United States: OCSPP; 2012. [acceso: 10/05/2012]. Disponible en: https://www.regulations.gov/document/EPA-HQ-OPPT-2009-0154-0020

14. IBM. SPSS. Versión 29 [software]. 2022. [acceso: 14/10/2023]. Disponible en: https://www.ibm.com/products/spss-statistics

15. Medrano Macías J, Morales Espinoza I, Benavides Mendoza A. Suelos y nutrición humana -énfasis en I, Se, Zn y Fe- [Internet]. Agraria. 2023; 20(3):17-2. Disponible en: https://www.revistaagraria.com/index.php/agraria/article/view/36

16. Liceaga Mendoza RI. Ruptura metabólica, (des)conocimiento ecológico y el cuerpo de los cuerpos: una aproximación a la continuidad entre la alimentación, salud y ambiente y su importancia política [Internet]. Argumentos. Revista de crítica social. 2023; 28: 417-447. Disponible en:https://dialnet.unirioja.es/servlet/articulo?codigo=9169846

17. Anand U, Vaishnav A, Sharma SK, Sahu J, Ahmad S, Sunita K, et al. Current advances and research prospects for agricultural and industrial uses of microbial strains available in world collections [Internet]. Sci Total Environ. 2022; 10(842): 1-22. DOI: 10.1016/j.scitotenv.2022.156641

18. Koller F, Schulz M, Juhas M, Bauer Panskus A. Then C. The need for assessment of risk sarising from interactions between NGT organisms from an EU perspective [Internet]. Environ Sci Eur. 2023; 35(27): 1-15. DOI:10.1186/s12302-023-00734-3

19. Caradus, JR. Intended and unintendedconsequences of geneticallymodifiedcrops – myth, fact and/ormanageableoutcomes? New Zealand Journal of Agricultural Research [Internet].2022; 66(6): 519–619. DOI: 10.1080/00288233.2022.2141273

20. Zurbrügg C, Hönemann L, Meissle M, Romeis J, Nentwig W. Decomposition dynamics and structural plant components of genetically modified Bt maize leaves do not differ from leaves of conventional hybrids.2010; 19(2):257-67. Disponible en: https://pubmed.ncbi.nlm.nih.gov/19609704/

21. Gomes DS, Barbosa AS, Santos TM, Santos SK, Silva JHCS, Aquino ÍS. Cinética de liberação de CO2, e decomposição da fitomassaem sistemas de uso e manejo do solo [Internet]. Research, Society and Development. 2021; 10(1): 1-14. DOI: 10.33448/rsd-v10i1.11413

22. Gomes DS, Santos SK, Silva JHCS, Medeiros T, Santos EDVS, Barbosa AS. CO2 flux e temperatura da superfície edáfica em áreas de caatinga [Internet]. Revista Brasileira de Geografia Física. 2021 [acceso: 04/11/2023]; 14(04):1898- 1908. Disponible en: https://periodicos.ufpe.br/revistas/index.php/rbgfe/article/view/248853

23. Valle MF, Castellari C, Andreoli Y, Diaz Delfino A, Picone L. Abundancia y distribución de la microbiota modificada por el uso del suelo en el sudeste bonaerense [Internet]. Agronomía & Ambiente. Revista de la Facultad de Agronomía (UBA). 2022 [acceso: 11/10/2024]; 42(1): 15-25. Disponible en: http://agronomiayambiente.agro.uba.ar/index.php/AyA/article/view/150/172

24. Machado Cuellar L, Rodríguez Suárez L, Murcia Torrejano V, Orduz Tovar SA, Ordoñez Espinosa CM, Suárez JC. Macrofauna del suelo y condiciones edafo climáticas en un gradiente altitudinal de zonas cafeteras, Huila, Colombia [Internet]. Rev. biol. Trop. 2021; 69(1): 102–12.DOI: 10.15517/rbt.v69i1.42955

25. Rincones PA, Zapata JE, Figueroa OA, Parra C. Evaluación de sustratos sobre los parámetros productivos de la lombriz roja californiana (Eisenia fetida) [Internet]. Información Tecnológica. 2023; 34(2):11-20. DOI: 10.4067/S0718-07642023000200011

26. Da Silva Gomes D, de Medeiros Santos T, da Silva Barbosa A, Kelly dos Santos S, de Sousa Melo T, de Souza Aquino. Effects of land-use changes on soil respiration [Internet]. Journal of Environmental Analysis and Progress.2022 [acceso: 05/03/2022]; 07(01): 9-15. Disponible en: https://www.researchgate.net/publication/357944605_Edaphic_breath_in_soil_use_and_management_systems

27. Mandal A, Sarkar B, Owens G, Thakur JK, Manna MC, Niazi NK, et al. Impact of genetically modified crops on rhizosphere microorganisms and processes: A review focusing on Btcotton [Internet]. Appl. Soil Ecol. 2020; 148:103492. DOI:10.1016/j.apsoil.2019.103492

28. Sánchez S, Crespo G, Hernández M, García Y. Factores bióticos y abióticos que influyen en la descomposición de la hojarasca en pastizales [Internet]. Pastos y Forrajes. 2008 [acceso: 13/09/2022]; 31(2):99-118. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-03942008000200001

29. Ferreira LHPL, Molina JC, Brasil C, Andrade G. Evaluation of Bacillus thuringiensis bioinsecticidal protein effects on soil microorganisms [Internet]. Plant and Soil. 2003; 256: 161–8. DOI: 10.1023/A:1026256700237

30. Oliveira AP, Pampulha ME, Bennett JP. A two-year field study with transgenic Bacillus thuringiensis maize: Effects on soil microorganisms [Internet]. Science of the Total Environment. 2008; 405:351-7. DOI: 10.1016/j.scitotenv.2008.05.046

31. Miethling-Graff R, Dockhorn S, Tebbe CC. Release of the recombinant Cry3Bb1 protein of Bt maize MON88017 into field soil and detection of effects on the diversity of rhizosphere bacteria [Internet]. Eur. J. Soil Biol. 2010 [acceso: 12/05/2025]; 46(1): 41–8. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S1164556309000995

32. Tan FX, Wang JW, Feng YJ, Chi GL, Kong HL, Qiu HF, et al. Bt corn plants and their straw have no apparent impact on soil microbial communities [Internet]. Plant Soil. 2010; 329: 349–64. DOI:10.1007/s11104-009-0163-2

33. Sanvido O, Romeis J, Bigler F. Ecological impacts of genetically modified crops: ten years of field research and commercial cultivation [Internet]. Advances in Biochemical Engineering and Biotechnology. 2007;107:235 –78. DOI: 10.1007/10_2007_048

34. Saxena D, Stotzky G. Bacillus thuringiensis (Bt) toxin released from root exudates and biomass of Btcorn has no apparent effect on earthworms, nematodes, protozoa, bacteria, and fungi in soil [Internet]. Soil Biology and Biochemistry.2001; 33(9): 1225–30. DOI: 10.1016/S0038-0717(01)00027-X

35. Chassain J, VieubléGonod L, Chenu C, Joimel S. Role of different izeclasses of organisms in croppedsoils: What do litter bag experiments tellus? A meta-analysis [Internet]. Soil Biology and Biochemistry. 2021; 162. DOI: 10.1016/j.soilbio.2021.108394

36. Castellanos Gonzalez L, Capacho Mogollón AE, Castellanos Hernández L. Variaciones de la microfauna del suelo con la implantación de 18 modelos agroecológicos en 6 municipios de Norte de Santander, Colombia [Internet]. Inge Cuc. 2020 [acceso: 10/05/2025]; 17(1): 81-95. Disponible en: https://revistascientificas.cuc.edu.co/ingecuc/article/view/3078

37. Sanclemente Reyes ÓE, Ararat Orozco MC, Mejía Ballesteros JE, Ríos LÁ, Montoya Rendón JC, Arango Arias ÁM, Arteaga Aguilera LF, et al. Relaciones agroambientales en sistemas productivos rurales [Internet]. 1 ed. Bogotá: Sello Editorial UNAD; 2021. DOI: 10.22490/9789586518048

38. Gómez Lende S. Cultivos transgénicos y acumulación por desposesión en Argentina (1991-2021): Categorías de análisis y ejemplos empíricos [Internet]. Clivajes. 2024 [acceso: 17/02/2025]; 17:102-33. Disponible en: https://clivajes.uv.mx/index.php/Clivajes/article/view/2793/4542

39. Castaldini M, Turrini A, Sbrana C, Benedetti A, Marchionni M, Mocali S, et al. Impact of Bt Corn on Rhizospheric and Soil Eubacterial Communities and on Beneficial Mycorrhizal Symbiosis in Experimental Microcosms [Internet]. Appl. Environ. Microbiol. 2005; 71(11): 6719–29. DOI: 10.1128/AEM.71.11.6719-6729.2005

40. Zurbrügg C, Hönemann L, Meissle M, Romeis J, Nentwig W. Decomposition dynamics and structural plant components of genetically modified Bt maize leaves do not differ from leaves of conventional hybrids [Internet]. Transgenic Res. 2010; 19: 257–67. DOI:10.1007/s11248-009-9304-x

41. Ombudsman, Biopesticides and Pollution Prevention Division (7511P). Bacillus thuringiensis Vip3Aa20 Insecticidal Protein and the Genetic Material Necessary for Its Production (via Elements of VectorpNOV1300) in Event MIR162 Maize (OECD) Unique Identifier: SYN-IR162-4) (006599) Fact Sheet [Internet].Washington DC: Office of Pesticide Programs Environmental Protection Agency; 2008.[acceso: 17/02/2025]. Disponible en: https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/fs_PC-006599_26-Dec-08.pdf

42. Raubuch M, Roose K, Warnstorff K, Wichern F, Joergens en R. Respiration pattern and microbial use of field-grown transgenic Bt-maize residues [Internet]. Soil Biology and Biochemistry. 2007; 39(9):2380-9. DOI:10.1016/j.soilbio.2007.04.012

43. Chen XD, Dunfeld KE, Fraser TD, Wakelin SA, Richardson AE, Condron LM. Soil biodiversity and biogeo chemical function in managed ecosystems [Internet]. Soil Research 2020; 58: 1–20. DOI: 10.1071/SR19067

44. Insfrán Ortiz A, Rey Benayas JM, Cayuela Delgado L. Agroforestry improves soil fauna abundance and composition in the Atlantic Forest of Paraguay[Internet]. Agroforest Syst. 2023; 97:1447–63. DOI: 10.1007/s10457-023-00869-5

45. Liu P, Yang Y, Li M. Responses of soil and earthworm gut bacterial communities to heavy metal contamination [Internet]. Environmental Pollution. 2020; 265 (Part B). DOI:10.1016/j.envpol.2020.114921

46. Sun M, Chao H, Zheng X, DengSh, Ye M, Hu F. Ecological role of earthworm intestinal bacteria in terrestrial environments: A review [Internet]. Science of The Total Environment. 2020: 740. DOI: 10.1016/j.scitotenv.2020.140008

47. Ortíz-Gamino D, Gregorio J, Barois I. ¿Las lombrices de tierra tienen potencial biotecnológico? [Internet]. Elementos 123. 2021 [acceso: 24/01/2025]; 71-7. Disponible en: https://elementos.buap.mx/directus/storage/uploads/00000006199.pdf

48. Ahmad A, Aslam Z, Bellitürk K, Iqbal N, Idrees M, Nawaz M, et al.Earthworms and vermicomposting: A review on thestory of blackgold [Internet]. Journal of InnovativeSciences 2021; 7(1):167-73. DOI: 10.17582/journal.jis/2021/7.1.167.173

49. Wang L, Fan Y, Zou L, Ge L, Jiang W, Chao S, et al. Bt toxins alter bacterial communities and their potential functions in earthworm intestines [Internet]. Environmental Pollution. 2025 [acceso: 18/05/2025]; 367: 125591. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S026974912402308X?via%3Dihub

50. Zhou X, Liang J, Luan Y, Song X, Zhang Zh. Characterisation of Bt maize IE09S034 in decomposition and response of soil bacterial communities [Internet]. Plant, Soil and Environment. 2021; 67(5): 286-98. DOI: 10.17221/629/2020-PSE

51. Flores S, Saxena D, Stotzky G. Transgenic Bt plants decompose less in soil than non-Bt plants [Internet]. Soil BiolBiochem.2005; 37(6): 1073–82. DOI: 10.1016/j.soilbio.2004.11.006

52. Oliveira-Filho EC, Grisolia CK. The Ecotoxicology of Microbial Insecticides and Their Toxins in Genetically Modified Crops: An Overview [Internet]. Int J Environ Res PublicHealth. 2022; 19(24): 1-14. DOI: 10.3390/ijerph192416495

53. Karim AA, Idris AB, Yilmaz S. Bacillus thuringiensis pesticidal toxins: A global analysis based on a scientometric study (1980-2021) [Internet]. Heliyon. 2023 [acceso: 04/07/2024]; 9(8): e18739. Disponible en:https://www.cell.com/action/showPdf?pii=S2405-8440%2823%2905938-8

54. Dunfield KE, Germida JJ. Impact of genetically modified crops on soil- and plant-associated microbial communities [Internet]. J Environ Qual. 2004; 33(3): 806-15. DOI: 10.2134/jeq2004.0806

55. Messéan A, Álvarez F, Devos Y, Camargo AM. Assessment of the 2021 post-market environmental monitoring report on the cultivation of genetically modified maize MON 810 in the EU [Internet]. EFSA J. 2023 [acceso: 10/05/2025]; 21(12):e8411. Disponible en: https://pmc.ncbi.nlm.nih.gov/articles/PMC10699111/

56. Tikhonova E, Shestibratov K. Assessing Impacts of Transgenic Plants on Soil Using Functional Indicators: Twenty Years of Research and Perspectives [Internet]. Plants. 2022; 11(18): 2439. DOI: 10.3390/plants11182439

57. Kochiieru M, Veršulienė A, Feiza V, Feizienė D. Trend for Soil CO2 Efflux in Grassland and Forest Land in Relation with Meteorological Conditions and Root Parameters [Internet]. Sustainability. 2023; 15(9): 7193. DOI: 10.3390/su15097193

58. Barrera León J, Barrezueta Unda S, García Bastidas RM. Evaluation of Soil Quality Indices of Different Crops Under Different Topographic Conditions [Internet]. Revista Metropolitana de Ciencias Aplicadas. 2020 [acceso: 18/05/2025]; 3(1): 182-90. Disponible en:https://www.researchgate.net/publication/340789690_EVALUATION_OF_SOIL_QUALITY_INDICES_OF_DIFFE-RENT_CROPS_UNDER_DIFFERENT_TOPOGRAPHIC_CONDITIONS

59. Morales-Rojas E, Chávez-Quintana S, Hurtado-Burga R, Milla-Pino M, Sanchez-Santillán TE. Martos Collazos-Silva. Macrofauna edáfica asociada al cultivo de maíz (Zea maíz) [Internet]. J. Selva Andina Biosph. 2021; 9(1): 15–24. DOI: 10.36610/j.jsab.2021.090100015

60. Vázquez C, de Goede RGM, Rutgers M, de KoeijermT J, Creamer RE. Assessing multifunctionality of agricultural soils: Reducing the biodiversity trade-off [Internet]. European Journal of Soil Science. 2020; 72(4):1624–39. DOI: 10.1111/ejss.13019

Published

2025-09-11

How to Cite

1.
Beiro Castro O, Dominguez Linares Y, Noa Rodríguez AC, Tellez-Rodriguez P, Leon Barreras L, Ferrer Colás A, et al. Effect of the transgenic corn variety H-Ame15 on soil health and implications for food security. Rev. cuba. med. mil [Internet]. 2025 Sep. 11 [cited 2026 Feb. 12];54(3):e025076655. Available from: https://revmedmilitar.sld.cu/index.php/mil/article/view/76655

Issue

Section

Research Article