Systematic review of the performance of WebCeph with AI compared to traditional and digital cephalometric methods

Authors

Keywords:

cephalometry, diagnosis, computer-assisted, artificial intelligence, orthodontics, pattern recognition automated, WebCeph

Abstract

Introduction: Cephalometric analysis is a fundamental tool in orthodontics for diagnosis and treatment planning. In recent years, the use of artificial intelligence has made it possible to automate this process. The WebCeph tool stands out for its efficiency and accessibility.
Objective:
Analyze the available scientific evidence on the performance of WebCeph as an AI-based tool for cephalometric tracing.
Methods:
A systematic review was conducted in accordance with the PRISMA guidelines, with searches in PubMed, Scopus, and Scielo (2020-2025). DeCS/MeSH terms were used in combination with Boolean operators. Original quantitative studies on WebCeph as an AI tool in cephalometry, published in Spanish or English with full text available, were included. Articles without specific mention of WebCeph, reviews, editorials, and abstracts were excluded.
Results:
Of the 21 studies included, 9 supported the exclusive use of WebCeph with AI due to its accuracy in simple cases. 10 identified limitations in certain measurements, suggesting clinical supervision. 2 pointed out significant inaccuracies when compared to validated manual or digital methods.
Conclusions:
WebCeph proves to be an efficient tool for cephalometric analysis, standing out for its ability to generate tracings in less time than traditional methods. Its performance is reliable in sagittal parameters and in cases with standard anatomical structures. However, in complex measurements or in the presence of severe malocclusions, the accuracy of the software decreases, requiring the intervention of the orthodontist through manual correction of cephalometric points.

Downloads

Download data is not yet available.

Author Biographies

Jhon Frank Alfredo Jimenez-Villalta , Universidad Nacional de Tumbes. Escuela de Posgrado. Tumbes, Perú.

Cirujano Dentista con grado de maestro en estomatología natural de la ciudad de Chiclayo departamento de Lambayeque

Sherman Olden Flores Amaya , Universidad Científica del sur. Lima, Perú.

Cirujano Dentista, Maestro en estomatología. 

References

1. Yu HJ, Cho SR, Kim MJ, Kim WH, Kim JW, Choi J. Automated Skeletal Classification with Lateral Cephalometry Based on Artificial Intelligence [Internet]. J Dent Res. 2020; 99(3):249-56. DOI: 10.1177/0022034520901715

2. Jeon S, Lee KC. Comparison of cephalometric measurements between conventional and automatic cephalometric analysis using convolutional neural network [Internet]. Prog Orthod. 2021 [acceso: 15/04/2025]; 22(1):14. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8165048/

3. Jiang F, Guo Y, Yang C, Zhou Y, Lin Y, Cheng F, et al. Artificial intelligence system for automated landmark localization and analysis of cephalometry [Internet]. Dentomaxillofac Radiol. 2023 [acceso: 15/04/2025]; 52(1):20220081. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9793451/

4. Tanna NK, AlMuzaini AAAY, Mupparapu M. Imaging in Orthodontics [Internet]. Dent Clin North Am. 2021 [acceso: 15/04/2025]; 65(3):623-41. Disponible en: https://pubmed.ncbi.nlm.nih.gov/34051933/

5. Khanagar SB, Al-Ehaideb A, Vishwanathaiah S, Maganur PC, Patil S, Naik S, et al. Scope and performance of artificial intelligence technology in orthodontic diagnosis, treatment planning, and clinical decision-making - A systematic review [Internet]. J Dent Sci. 2021; 16(1):482-92. DOI: 10.1016/j.jds.2020.05.022

6. Serafin M, Baldini B, Cabitza F, Carrafiello G, Baselli G, Del Fabbro M, et al. Accuracy of automated 3D cephalometric landmarks by deep learning algorithms: systematic review and meta-analysis [Internet]. Radiol Med. 2023 [acceso: 15/04/2025]; 128(5):544-55. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181977/

7. Dipalma G, Inchingolo AD, Inchingolo AM, Piras F, Carpentiere V, Garofoli G, et al. Artificial Intelligence and Its Clinical Applications in Orthodontics: A Systematic Review [Internet]. Diagnostics. 2023 [acceso: 15/04/2025]; 13(24):3677. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10743240/

8. Rauniyar S, Jena S, Sahoo N, Mohanty P, Dash BP. Artificial Intelligence and Machine Learning for Automated Cephalometric Landmark Identification: A Meta-Analysis Previewed by a Systematic Review [Internet]. Cureus. 2023 [acceso: 16/04/2025]; 15(6): e40934. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10368300/

9. Mohammad-Rahimi H, Nadimi M, Rohban MH, Shamsoddin E, Lee VY, Motamedian SR. Machine learning and orthodontics, current trends and the future opportunities: A scoping review [Internet]. Am J Orthod Dentofacial Orthop. 2021; 160(2):170-192.e4. DOI: 10.1016/j.ajodo.2021.02.013

10. Hwang HW, Park JH, Moon JH, Yu Y, Kim H, Her SB, et al. Automated Identification of Cephalometric Landmarks: Part 2- Might It Be Better Than human? [Internet]. Angle Orthod. 2020 [acceso: 15/04/2025]; 90(1):69-76. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8087057/

11. Ristau B, Coreil M, Chapple A, Armbruster P, Ballard R. Comparison of AudaxCeph®’s fully automated cephalometric tracing technology to a semi-automated approach by human examiners [Internet]. Int Orthod. 2022; 20(4):100691. DOI: 10.1016/j.ortho.2022.100691

12. Tsolakis IA, Tsolakis AI, Elshebiny T, Matthaios S, Palomo JM. Comparing a Fully Automated Cephalometric Tracing Method to a Manual Tracing Method for Orthodontic Diagnosis [Internet]. J Clin Med. 2022; 11(22):6854. DOI: 10.3390/jcm11226854

13. Khan EB, Zaheen M, Ullah I, Ullah A, Jehan NS, Ghaffar H. Evaluating the Accuracy of Automated Cephalometric Analysis Based on Artificial Intelligence [Internet]. Journal of Postgraduate Medical Institute. 2025 [acceso: 16/04/2025]; 39(1):76-80. Disponible en: https://www.jpmi.org.pk/index.php/jpmi/article/view/3473

14. Prince STT, Srinivasan D, Duraisamy S, Kannan R, Rajaram K. Reproducibility of linear and angular cephalometric measurements obtained by an artificial-intelligence assisted software (WebCeph) in comparison with digital software (AutoCEPH) and manual tracing method [Internet]. Dental Press J Orthod. 2023 [acceso: 01/05/2025]; 28(1): e2321214. Disponible en: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S2176-94512023000100302&tlng=en

15. Azeez SM, Surji FF, Kadir SO, Karim R. Accuracy and Reliability of WebCeph Digital Cephalometric Analysis in Comparison with Conventional Cephalometric Analysis [Internet]. World Journal of Dentistry. 2023 [acceso: 01/05/2025]; 14(8):727-32. Disponible en: https://www.wjoud.com/doi/10.5005/jp-journals-10015-2285

16. Katyal D, Balakrishnan N. Evaluation of the accuracy and reliability of WebCeph – An artificial intelligence-based online software [Internet]. APOS. 2022 [acceso: 01/05/2025]; 12(4):271-6. Disponible en: https://apospublications.com/evaluation-of-the-accuracy-and-reliability-of-WebCeph-an-artificial-intelligence-based-online-software/

17. Kilinç DD, Kircelli BH, Sadry S, Karaman A. Evaluation and comparison of smartphone application tracing, web based artificial intelligence tracing and conventional hand tracing methods [Internet]. Journal of Stomatology, Oral and Maxillofacial Surgery. 2022 [acceso: 01/05/2025]; 123(6):e906-15. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S2468785522002051

18. Mahto RK, Kafle D, Giri A, Luintel S, Karki A. Evaluation of fully automated cephalometric measurements obtained from web-based artificial intelligence driven platform [Internet]. BMC Oral Health. 2022 [acceso: 01/05/2025] ;22(1):132. Disponible en: https://bmcoralhealth.biomedcentral.com/articles/10.1186/s12903-022-02170-w

19. Kunz F, Stellzig-Eisenhauer A, Widmaier LM, Zeman F, Boldt J. Assessment of the quality of different commercial providers using artificial intelligence for automated cephalometric analysis compared to human orthodontic experts [Internet]. J Orofac Orthop. 2023 [acceso: 01/05/2025]; 86:145-160. Disponible en: https://link.springer.com/10.1007/s00056-023-00491-1

20. Koz S, Uslu-Akcam O. Artificial Intelligence-Supported and App-Aided Cephalometric Analysis: Which One Can We Trust? [Internet]. Diagnostics. 2025 [acceso: 01/05/2025]; 15(5):559. Disponible en: https://www.mdpi.com/2075-4418/15/5/559

21. Saifeldin H. Comparison between Manual Lateral Cephalometric Analysis and Artificial Intelligence Driven Platforms [Internet]. Ain Shams Dental Journal. 2023 [acceso: 01/05/2025]; 29(1):1-5. Disponible en: https://asdj.journals.ekb.eg/article_324064.html

22. Zaheer R, Shafique HZ, Khalid Z, Shahid R, Jan A, Zahoor T, et al. Comparison of semi and fully automated artificial intelligence driven softwares and manual system for cephalometric análisis [Internet]. BMC Med Inform Decis Mak. 2024 [acceso: 26/04/2025]; 24(1):271. Disponible en: https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-024-02664-3

23. Mercier JP, Rossi C, Sanchez IN, Renovales ID, Sahagún PMP, Templier L. Reliability and accuracy of Artificial intelligence-based software for cephalometric diagnosis. A diagnostic study [Internet]. BMC Oral Health. 2024 [acceso: 23/05/2025]; 24(1): [aprox. 19 pant.]. Disponible en: https://bmcoralhealth.biomedcentral.com/articles/10.1186/s12903-024-05097-6

24. El-Dawlatly M, Attia KH, Abdelghaffar AY, Mostafa YA, Abd El-Ghafour M. Preciseness of artificial intelligence for lateral cephalometric measurements [Internet]. J Orofac Orthop. 2024 [acceso: 01/05/2025]; 85(S1):27-33. Disponible en: https://link.springer.com/10.1007/s00056-023-00459-1

25. Raby I, Bernales P, Pérez De Arce M, Toledo C, Rojas V. Comparación de plataforma de inteligencia artificial para análisis cefalométrico con un programa semiautomático [Internet]. Int j interdiscip dent. 2024 [acceso: 23/05/2025]; 17(3):123-5. Disponible en: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S2452-55882024000300123&lng=en&nrm=iso&tlng=en

26. Bor S, Cigerim SÇ, Kotan S. Comparison of AI-assisted cephalometric analysis and orthodontist-performed digital tracing análisis [Internet]. Prog Orthod. 2024 [acceso: 01/05/2025]; 25(1):41. Disponible en: https://progressinorthodontics.springeropen.com/articles/10.1186/s40510-024-00539-x

27. Çoban G, Öztürk T, Hashimli N, Yagci A. Comparison between cephalometric measurements using digital manual and web-based artificial intelligence cephalometric tracing software [Internet]. Dental Press J Orthod. 2022 [acceso: 16/04/2025]; 27(4):e222112. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9377318/

28. Danisman H. Artificial intelligence web-based cephalometric analysis platform: comparison with the computer assisted cephalometric method [Internet]. Clinical and Investigative Orthodontics. 2023 [acceso: 01/05/2025]; 82(4):194-203. Disponible en: https://www.tandfonline.com/doi/full/10.1080/27705781.2023.2254537

29. Tageldin MA, Yacout YM, Eid FY, Abdelhafiz SH. Accuracy of cephalometric landmark identification by artificial intelligence platform versus expert orthodontist in unilateral cleft palate patients: A retrospective study [Internet]. International Orthodontics. 2025 [acceso: 26/04/2025]; 23(2):100990. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S1761722725000257

30. Gupta S, Shetty S, Natarajan S, Nambiar S, MV A, Agarwal S. A comparative evaluation of concordance and speed between smartphone app-based and artificial intelligence web-based cephalometric tracing software with the manual tracing method: A cross-sectional study [Internet]. J Clin Exp Dent. 2024 [acceso: 16/04/2025]; 16(1): e11-7. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10837802/

31. Chuchra A, Gupta K, Arora R, Bindra S, Hingad N, Babbar A. Digital Cephalometric Analysis: Unveiling the Role and Reliability of Semi-automated OneCeph, Artificial Intelligence-Powered WebCeph Mobile App, and Semi-automated Computer-Aided NemoCeph Software in Orthodontic Practice [Internet]. Cureus. 2024 [acceso: 01/05/2025]; 16(11): e72948. Disponible en: https://www.cureus.com/articles/303431-digital-cephalometric-analysis-unveiling-the-role-and-reliability-of-semi-automated-oneceph-artificial-intelligence-powered-WebCeph-mobile-app-and-semi-automated-computer-aided-nemoceph-software-in-orthodontic-practice

32. Kazimierczak W, Gawin G, Janiszewska-Olszowska J, Dyszkiewicz-Konwinska M, Nowicki P, Kazimierczak N, et al. Comparison of Three Commercially Available, AI-Driven Cephalometric Analysis Tools in Orthodontics [Internet]. JCM. 2024 [acceso: 02/05/2025]; 13(13):3733. Disponible en: https://www.mdpi.com/2077-0383/13/13/3733

33. Baig N, Gyasudeen KS, Bhattacharjee T, Chaudhry J, Prasad S. Comparative evaluation of commercially available AI-based cephalometric tracing programs [Internet]. BMC Oral Health. 2024 [acceso: 01/05/2025]; 24(1):1241. Disponible en: https://bmcoralhealth.biomedcentral.com/articles/10.1186/s12903-024-05032-9

34. Silva TP, Pinheiro MCR, Freitas DQ, Gaêta-Araujo H, Oliveira-Santos C. Assessment of accuracy and reproducibility of cephalometric identification performed by 2 artificial intelligence-driven tracing applications and human examiners [Internet]. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology. 2024 [acceso: 01/05/2025]; 137(4):431-40. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S2212440324000178

35. Bao H, Zhang K, Yu C, Li H, Cao D, Shu H, et al. Evaluating the accuracy of automated cephalometric analysis based on artificial intelligence [Internet]. BMC Oral Health. 2023 [acceso: 16/04/2025]; 23(1):191. Disponible en: https://bmcoralhealth.biomedcentral.com/articles/10.1186/s12903-023-02881-8

Published

2026-01-15

How to Cite

1.
Jimenez-Villalta JFA, Flores Amaya SO. Systematic review of the performance of WebCeph with AI compared to traditional and digital cephalometric methods. Rev. cuba. med. mil [Internet]. 2026 Jan. 15 [cited 2026 Jan. 17];55(1):e026076739. Available from: https://revmedmilitar.sld.cu/index.php/mil/article/view/76739