Predictive model of hyperinflammation in patients with COVID-19

Authors

Keywords:

COVID-19, electrical bioimpedance, biomarkers, hyperinflammation

Abstract

Introduction: Most severe cases of COVID-19 are associated with hyperinflammation. The scales developed in the context of the recent pandemic have not focused on determining its onset, but rather primarily on prognosis. Early prediction of this disorder is crucial for implementing measures to minimize complications from the disease.

Objective: Design a model for the early prediction of hyperinflammation in patients with COVID‑19.

Methods: An observational, analytical, cohort study was conducted from July 1 to October 31, 2021, at the “Dr. Joaquín Castillo Duany” Military Hospital in Santiago de Cuba; 472 patients were studied. A multivariate analysis was performed using binary logistic regression.

Results: Male patients predominated (72.0%); 27.1% of infected patients took > 3 days to reach the hospital, and the majority were discharged alive (75.0%). In the multivariate analysis, the arterial oxygen pressure/fractional inspired oxygen ratio, phase angle, lactodehydrogenase, taking more than 3 days to reach the hospital, and age ≥ 70 years were significantly related to hyperinflammation. The constructed model showed an area under the curve of 0.930; (95% CI: 0.896–0.954), the Hosmer-Lemeshow test had a value of 0.150 and the Nagelkerke R2 was 0.713.

Conclusions: The predictive model designed from clinical, humoral, hemogasometric and bioelectrical elements showed good fit and discriminatory power.

Downloads

Download data is not yet available.

References

1. Silva JA, Ribeiro LR, Gouveia IM, Marcelino DR, Santos SD, Lima VB, et al. Hyperinflammatory Response in COVID-19: A Systematic Review Viruses [Internet]. 2023; 15(2):553. DOI: 10.3390/v15020553

2. Xaverius HPF, Louise FJ, Driessen L, de Smet V, Slingerland-Boot R, Mensink M. Association of bioelectric impedance analysis body composition and disease severity in COVID-19 hospital ward and ICU patients: The BIAC-19 study [Internet]. Clinic Nutrit. 2021 [acceso: 08/08/2024]; 4:2328-36. Disponible en: https://pmc.ncbi.nlm.nih.gov/articles/PMC7577288

3. Osuna IA, Rodríguez S, Casas GA, Hernández CM, Rodríguez NC, Aguilar A, et al. Low phase angle is associated with 60-day mortality in critically ill patients with COVID-19 [Internet]. J Parenter Enteral Nutr. 2021; 46(4):828-35. DOI: 10.1002/jpen.2236

4. Carriel J, Muñoz R, Bolaños O, Heredia F, Menéndez J, Martin J. CURB-65 como predictor de mortalidad a 30 días en pacientes hospitalizados con COVID-19 en Ecuador: estudio COVID-EC [Internet]. Rev Clin Esp. 2022; 222(1): 37-41. DOI: 10.1016/j.rce.2020.10.001

5. Ministerio de Salud Pública de Cuba. Protocolo de actuación nacional para la COVID-19. Versión 1.6 [Internet]. La Habana: Ministerio de salud pública; 2021. [acceso: 24/05/2025]. Disponible en: https://covid19cubadata.github.io/protocolos/protocolo-version-6.pdf

6. Cardozo S, Sanabria O. Índices de oxigenación: más allá de la PaO2/FiO2 como herramienta ideal [Internet]. Acta colomb cuid intensiv. 2022 [acceso: 21/06/2025]; 22(3): 227-36. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0122726222000246

7. Chávez CA. Predictor del deterioro de mecánica pulmonar a través de elevación de índice oxigenatorio y disminución del Pao2/Fio2 en pacientes con infección por COVID-19 que cursan con síndrome de distrés respiratorio agudo [Internet]. [Tesis de especialidad]. Perú: Universidad Científica del Sur; 2021. [acceso: 21/06/2025]. Disponible en: https://repositorio.cientifica.edu.pe/handle/20.500.12805/2393

8. Patiño MV, Yaro CR. Correlación entre los índices SpO2/FiO2 y PaO2/FiO2 en SDRA ocasionado por SARS-COV-2 en residentes de gran altitud del Hospital Nacional Ramiro Prialé [Internet]. [Tesis de especialista]. Huancayo: Facultad de Ciencias de la Salud; 2023. [acceso: 21/06/2025]. Disponible en: https://repositorio.continental.edu.pe/handle/20.500.12394/12872

9. Belenguer A, Bernal F, Hernández H, Hermosilla I, Tormo L, Viana C. Correlation and concordance of SaO2/FiO2 and PaO2/FiO2 ratios in patients with COVID-19 pneumonia who received non-invasive ventilation in two intensive care units [Internet]. Med intensiva. 2024 [acceso:11/02/2025];48(5):298-300. Disponible en: https://www.medintensiva.org/en-pdf-S2173572724000444

10. Chen IY, Moriyama M, Chang MF, Ichinohe T. Severe acute respiratory syndrome coronavirus viroporin 3a activates the NLRP3 inflammasome [Internet]. Front Microbiol. 2019; 10:1-9. DOI: 10.3389/fmicb.2019.00050

11. González R, Acosta FA, Oliva E, Rodríguez SF, Cabeza I. Predictores de mal pronóstico en pacientes con la COVID-19 [Internet]. Rev Cubana Med Milit. 2020 [acceso: 14/02/2025]; 49(4):e0200918. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0138-65572020000400020

12. Guerrero THE, Gómez GMN, Hernández PAE, Jiménez CC. De lo complejo a lo simple, deshidrogenasa láctica como marcador de severidad en pacientes con infección por SARS-CoV-2 [Internet]. Med Crit. 2021; 35(6):319-28. DOI: 10.35366/103718

13. Cornejo I, Vegas IM, Fernández R, García C, Bellid D, Tinahones F. Phase angle and COVID-19: A systematic review with meta-analysis [Internet]. Rev Endocr Metab Disord. 2023; 24(3):525-42. DOI: 10.1007/s11154-023-09793-6

14. Ferrer JE, del Río G, Amaro I, Benítez E. Ángulo de fase en un modelo predictivo de mortalidad en pacientes con la COVID-19 [Internet]. MEDISAN. 2024 [acceso: 23/03/2025]; 28(5): e4862 Disponible en: https://medisan.sld.cu/index.php/san/article/view/4862

15. Xu XW, Wu XX, Jiang XG, Xu KJ, Ying LJ, Ma CL, et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series [Internet]. BMJ Med. 2020 [acceso: 04/06/2025]; 19:368.1-7. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7224340/

16. Pérez MA, Valdés J, Ortiz L. Características clínicas y gravedad de COVID-19 en adultos mexicanos [Internet]. Gac Méd Méx. 2020 [acceso: 04/06/2025];156(5):379-87. Disponible en: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S001638132020000500379&lng=es

17. Ferrucci L, Fabbri E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty [Internet]. Nat Rev Cardiol. 2018 [acceso: 26/04/2025];15(9):505-22. DOI: 10.1038/s41569-018-0064-2

18. Tafur LA, Rosero AS, Remolina SA, del Mar M, Lema E, Zorrilla A, et al. Características y desenlaces clínicos de pacientes con COVID-19 en la primera ola en Cali, Colombia [Internet]. Acta colomb cuid intensiv. 2022 [acceso: 04/01/2025]; 22(1): 536-45. DOI. 10.1016/j.acci.2021.12.002

19. Herrera CE, Lage A, Betancourt J, Barreto E, Sanchez L, Hernández L. La edad como variable asociada a la gravedad en pacientes con la COVID-19 [Internet]. Rev Cubana Med Milit. 2022 [acceso: 26/01/2025]; 51(1):1-15. Disponible en: https://revmedmilitar.sld.cu/index.php/mil/article/view/1766

20. León JL, Calderón M, Gutiérrez A. Análisis de mortalidad y comorbilidad por Covid-19 en Cuba. Rev Cubana Med [Internet]. 2021 [acceso: 29/09/2022]; 60(2): 1-11. [aprox. 17 p.]. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0034-75232021000200004

21. Ramos da Silva B, MialichMS, Cruz LP, Rufato S, Gozzo T, Jordao AA. Performance of functionality measures and phase angle in women exposed to chemotherapy for early breast cancer [Internet]. Clin Nutr ESPEN. 2021; 42:105-16. DOI: 10.1016/j.clnesp.2021.02.007

Published

2025-09-30

How to Cite

1.
Ferrer Castro JE, del Río Caballero G, Amaro Guerra I, Benítez Sánchez E, Rodríguez González Z. Predictive model of hyperinflammation in patients with COVID-19. Rev. cuba. med. mil [Internet]. 2025 Sep. 30 [cited 2025 Oct. 3];54(4):e025076744. Available from: https://revmedmilitar.sld.cu/index.php/mil/article/view/76744