Evaluación de la frecuencia cardiaca durante la bipedestación activa inicial en pacientes que padecen síncope vasovagal

Jose Del Carmen Iglesias Alfonso, Barbaro Nicolas Socarras Hernandez

Texto completo:

HTML PDF XML

Resumen

Introducción: El síncope vasovagal es la causa más frecuente de pérdida breve de la conciencia, en su etiopatogenia se reporta una disfunción autonómica que puede ponerse de manifiesto en la bipedestación activa inmediata.
Objetivo: Comparar la dinámica de los cambios de la frecuencia cardíaca durante la bipedestación activa inmediata, de pacientes que padecen síncope vasovagal y sujetos controles.
Métodos: Se evaluaron 132 sujetos supuestamente sanos (grupo A) entre 18 y 25 años y 156 pacientes con síncopes vasovagales; fueron divididos por su respuesta ante la bipedestación prolongada, negativa 111 (grupo B) y positiva 45 (grupo C). Se registró la actividad electrocardiográfica en decúbito supino y al inicio de la bipedestación activa, se obtuvo las secuencias de intervalos RR. Se comparó la frecuencia cardíaca en los 3 grupos, con 22 indicadores (posicionales, temporales, ordinales y relacionales, promedio y de la velocidad de los cambios).
Resultados: No hubo diferencias en los indicadores promedio, sin embargo, algunos que evalúan la velocidad del cambio inicial, fueron significativamente menores en el grupo A comparado con B y C (p < 0,05), mientras que los que evalúan la velocidad de recuperación, fueron significativamente menores en el grupo C comparado con A y B.
Conclusión: La dinámica de los cambios de frecuencia, permitió encontrar indicadores que pueden considerarse posibles predictores de una respuesta cardiovascular inadecuada en pacientes con síncope vasovagal.

Palabras clave

síncope vasovagal; frecuencia cardiaca; bipedestación activa; sistema nervioso autónomo.

Referencias

Lara S, Mori A. Síncope. Medicina Infantil. 2019 [acceso: 30/10/2020]; XXVI(2): 205 - 10. Disponible en: https://www.medicinainfantil.org.ar/images/stories/volumen/2019/xxvi_2_205.pdf

Brignole M, Moya A, de Lange FJ, Deharo JC, Elliott PM, Fanciulli A, et al. 2018 ESC Guidelines for the diagnosis and management of syncope . European Heart Journal. 2018 [acceso: 22/11/2019]; 39(21): 1883-48. Disponible en: https://doi.org/10.1093/eurheartj/ehy037

Ghariq M, Thijs RD, Bek LM, Van Zwet EW, Benditt DG, Van Dijk JG. A higher proportion of menthan of women fainted in the phase without nitroglycerin in tilt-induced vasovagal syncope. Clinical Autonomic Research. 2020 [acceso: 18/12/2020]; 30: 441-447. Disponible en: https://doi.org/10.1007/s10286-020-00666-5

Hall JE. Guyton y Hall: tratado de fisiología médica. 13 edición. Barcelona: Elsevier Health Sciences Spain; 2016.

Wieling W. Standing, orthostatic stress, and autonomic function. En: Bannister R, editor. Autonomic failure: a textbook of clinical disorders of the autonomic nervous system. Oxford: Oxford Medical Publications; 1988. p. 308-20.

Ewing DJ, Martyn CN, Young RJ, Clarke BF. The value of cardiovascular autonomic function tests: 10 years experience in diabetes. Diabetes Care. 1985 [acceso: 06/12/2019]; 8(5):491-8. Disponible en: https://doi.org/10.2337/diacare.8.5.491

Campbell IW, Ewing DJ, Clarke BF. Tests of cardiovascular reflex function in diabetic autonomic neuropathy. En: FA Gries, HJ Freund, F Rube, H Berger (eds). Aspects of autonomic neuropathy in diabetics. Stuttgart: Georg Thieme Verlag; 1979. p. 61-8.

Sundkvist G, Lilja B, Almer LO. Deep breathing, Valsalva, and tilt table tests in diabetics with and without symptoms of autonomic neuropathy. Acta Med Scand. 1982 [acceso: 06/12/2019]; 211:369-73. Disponible en: https://doi.org/10.1111/j.0954-6820.1982.tb01964.x

Borst C, Wieling W, Van Brederode JFM, Hond A, de Rijk LG, Dunning AJ. Mechanisms of initial heart rate response to postural change. Am J Physiol. 1982 [acceso: 18/12/2020]; 243(6): H676-H81. Disponible en: https://doi.org/10.1152/ajpheart.1982.243.5.H676

Wieling W, Borst C, Van Brederode JFM, Van Dongen Torman MA, Van Montfrans GA, Dunning AJ. Testing for autonomic neuropathy: heart rate changes after orthostatic maneuvers and static muscle contractions. Clin Sci. 1983 [acceso: 06/12/2019]; 64:581-6. Disponible en: https://doi.org/10.1042/cs0640581

Cybulski G, Niewiadomski W. Influence of age on the immediate heart rate response to the active orthostatic test. J Physiol Pharmacol. 2003 [acceso: 18/12/2020]; 54(1): 65-80. Disponible en: http://www.jpp.krakow.pl/journal/archive/03_03/pdf/65_03_03_article.pdf

Iglesias Alfonso JC, Aldana Vilas L, García Gutiérrez E, Vázquez Díaz Granados G. Frecuencia cardiaca en la bipedestación activa inmediata en jóvenes sanos. Revista cubana de medicina militar. 2010 [acceso: 18/12/2020]; 39(2): 104-15. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0138-65572010000200005&lng=es

Machado A, Estévez M. Software to digitize electrocardiograms and quantify heart rate variability in humans. ManualZZ, The Universal Manual Library. 2008 [acceso: 18/12/2020]. Disponible en: https://manualzz.com/doc/6611880/software-to-digitize-electrocardiograms-and-quantify-hear

Iglesias JC, Reyes L, Delgado O, Sánchez K, Quevedo C. Manual del Usuario del Sistema de Registro y Procesamiento del Ritmo Cardiaco. Ritmocard. Ver 3.2. La Habana: HMC Dr. Carlos J. Finlay; 1997.

StatSoft, Inc. STATISTICS (data analysis software system), version 12. 2013. [acceso: 18/12/2014]. Disponible en: https://www.scientific-computing.com/press-releases/statistica-12?product_id=1543

Grubb BP. Neurocardiogenic syncope and related disorders of orthostatic intolerance. Circulation. 2005 [acceso: 18/12/2020]; 111(22): 2997-3006. Disponible en: https://doi.org/10.1161/CIRCULATIONAHA.104.482018

Purves D, Augustine GJ, Fitzpatrick D, Hall WC, Lamantia AS, Mc Namara JO, et al (Eds.). The Visceral Motor System. En: Neuroscience, 3rd ed., Sunderland, MA: Sinauer Associates, Inc.; 2004. p. 469-499. [acceso: 18/12/2020]. Disponible en: https://www.hse.ru/data/2011/06/22/1215686482/Neuroscience.pdf

Estévez M. Visión clásica del Sistema Nervioso Autónomo. Habana, Instituto Nacional de Neurología y Neurocirugía; 2007. [acceso: 18/12/2020]. Disponible en: http://infomed20.sld.cu/wiki/doku.php?id=librosabiertos:vision_clasica_del_sistema_-nervioso_autonomo&rev=1192374032

Pagani M, Lombardi F, Guzzetti S, Rimoldi O, Furlan R, Pizzinelli P, et al. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympathovagal interaction in man and conscious dog. Circ Res. 1986 [acceso: 18/12/2020]; 59(2):178-193 Disponible en: https://doi.org/10.1161/01.res.59.2.178

Mallat Z, Vicaut E, Sangaré A, Verschueren J, Fontaine G, Frank R. Prediction of head-up tilt test result by analysis of early heart rate variations. Circulation. 1997 [acceso: 05/02/2021]; 96:581-584. Disponible en: https://doi.org/10.1161/01.CIR.96.2.581

García A, Lacunza J, Rojo JL, Sánchez JJ, Juan Martínez J, Jesús Requena J, et al. El incremento temprano de la frecuencia cardiaca no predice el resultado de la prueba de mesa basculante potenciada con nitroglicerina. Rev Esp Cardiol, 2005 [acceso: 05/02/2021]; 58: 499-503. Disponible en: https://doi.org/10.1157/13074859

Kovalchuk T, Boyarchuk O, Pavlyshyn H, Balatska N, Luchyshyn N. Analysis of heart rate variability in paediatric patients with vasovagal syncope. Pediatr Pol. 2019 [acceso: 05/02/2021]; 94(6): 357-367. Disponible en: https://doi.org/10.5114/polp.2019.92965

Estévez M , Carricarte C , Denis Jas J, Rodríguez E, Machado C , Montes J, et al. Influence of Heart Rate, Age, and Gender on Heart Rate Variability in Adolescents and Young Adults. Adv Exp Med Biol - Clinical and Experimental Biomedicine. 2019 [acceso: 05/02/2021]; 4: 19-33. Disponible en: https://doi.org/10.1007/5584_2018_292

Enlaces refback

  • No hay ningún enlace refback.


URL de la licencia: https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es