Puntaje de riesgo de diabetes mellitus tipo 2 en pacientes mayores de 45 años
Resumen
Introducción: La diabetes mellitus ha provocado un aumento del interés en el desarrollo de estudios e investigaciones, potenciada en la actualidad al ser considerada una pandemia.
Objetivo: Desarrollar un puntaje de riesgo de diabetes mellitus tipo, 2 en pacientes mayores de 45 años.
Método: Se realizó un estudio analÃtico tipo de cohorte, con una muestra de análisis conformada por 1021 pacientes y una de validación con 891. Las variables predictoras se obtuvieron a través de análisis univariado, mediante regresión logÃstica binaria y cálculo del odds ratio, con un nivel de significación de p= 0,05. En la escala de riesgo se valoró el poder discriminante mediante el área bajo la curva; para calibrarla se calcularon las pruebas de ómnibus, los estadÃgrafos de R2 de Cox, Snell, de Nagelkerke y la prueba de bondad de ajuste de Hosmer-Lemeshow para p= 0,05.
Resultados: Se obtuvo un modelo que explica el 77,6 % de la variable independiente, con una sensibilidad de 94,9 % y una especificad de 85,3%, el área bajo de la curva tuvo un rango de 0,725 a 0,833. Se desarrolló un puntaje de riesgo el cual fue estadÃsticamente significativo con X2 = 17; p= 0,017 y una sensibilidad de 96,8 %.
Conclusiones: El puntaje desarrollado predice el riesgo de padecer diabetes mellitus tipo 2 en los pacientes estudiados.
Palabras clave
Referencias
Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019; 157:107843. DOI: 1016/j.diabres.2019.107843
Lindström J, Tuomilehto J. The diabetes risk score: a practical tool to predict type 2 diabetes risk. Diabetes Care. 2003; 26(3):725-31. DOI: 10.2337/diacare.26.3.725
Burden ML, Burden AC. The American Diabetes Association Screening Questionnaire for Diabetes. Diabetes Care. 1994; 17(1):97. Disponible en: https://diabetesjournals.org/care/article-pdf/17/1/97/442471/17-1-97.pdf
Herman WH, Smith PJ, Thompson TJ, Engelgau MM, Aubert RE. A new and simple questionnaire to identify people at increased risk for undiagnosed diabetes. Diabetes Care. 1995; 18(3):382-7. DOI: 10.2337/diacare.18.3.382
Ruige JB, de Neeling JN, Kostense PJ, Bouter LM, Heine RJ. Performance of an NIDDM screening questionnaire based on symptoms and risk factors. Diabetes Care. 1997; 20(4):491-6. DOI: 10.2337/diacare.20.4.491
Von Eckardstein A, Schulte H, Assmann G. Risk for diabetes mellitus in middle-aged Caucasian male participants of the PROCAM study: implications for the definition of impaired fasting glucose by the American Diabetes Association. Prospective Cardiovascular Münster. J Clin Endocrinol Metab. 2000; 85(9):3101-8. DOI: 10.1210/jcem.85.9.6773
Kaushal K, Mahajan A, Parashar A, Dhadwal DS, Jaswal VMS, Jaret P, et al. Validity of Madras Diabetes Research Foundation: Indian Diabetes Risk Score for Screening of Diabetes Mellitus among Adult Population of Urban Field Practice Area, Indira Gandhi Medical College, Shimla, Himachal Pradesh, India. Indian J Endocrinol Metab. 2017; 21(6):876-81. DOI: 10.4103/ijem.IJEM_361_16
Lim HM, Chia YC, Koay ZL. Performance of the Finnish Diabetes Risk Score (FINDRISC) and Modified Asian FINDRISC (ModAsian FINDRISC) for screening of undiagnosed type 2 diabetes mellitus and dysglycaemia in primary care. Prim Care Diabetes. 2020; 14(5):494-500. DOI: 10.1016/j.pcd.2020.02.008
Sulaiman N, Mahmoud I, Hussein A, Elbadawi S, Abusnana S, Zimmet P, et al. Diabetes risk score in the United Arab Emirates: a screening tool for the early detection of type 2 diabetes mellitus. BMJ Open Diabetes Res Care. 2018; 6(1):e000489. DOI: 10.1136/bmjdrc-2017-000489
Bahijri S, Al-Raddadi R, Ajabnoor G, Jambi H, Al Ahmadi J, Borai A, et al. Dysglycemia risk score in Saudi Arabia: A tool to identify people at high future risk of developing type 2 diabetes. J Diabetes Investig. 2020; 11(4):844-55. DOI: 10.1111/jdi.13213
Bernabe-Ortiz A, Perel P, Miranda JJ, Smeeth L. Diagnostic accuracy of the Finnish Diabetes Risk Score (FINDRISC) for undiagnosed T2DM in Peruvian population. Prim Care Diabetes. 2018; 12(6):517-25. DOI: 10.1016/j.pcd.2018.07.015
ElSayed NA, Aleppo G, Aroda VR, et al. 2. Classification and Diagnosis of Diabetes: Standards of Care in Diabetes-2023. Diabetes Care. 2023 [acceso: 16/03/2021); 46(Suppl 1):S19-S40. Disponible en: https://diabetesjournals.org/care/article/46/Supplement_1/S19/148056/2-Classification-and-Diagnosis-of-Diabetes
Collins GS, Dhiman P, Andaur Navarro CL, Ma J, Hooft L, Reitsma JB, et al. Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence. BMJ Open. 2021 [12/02/2022); 11(7):e048008. Disponible en: https://pubmed.ncbi.nlm.nih.gov/34244270/
World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013; 310(20):2191-4. DOI: 10.1001/jama.2013.281053
Nieto-MartÃnez R, González-Rivas JP, Ugel E, Marulanda MI, Durán M, Mechanick JI, Aschner P. External validation of the Finnish diabetes risk score in Venezuela using a national sample: The EVESCAM. Prim Care Diabetes. 2019; 13(6):574-82. DOI: 10.1016/j.pcd.2019.04.006
Lim HM, Chia YC, Koay ZL. Performance of the Finnish Diabetes Risk Score (FINDRISC) and Modified Asian FINDRISC (ModAsian FINDRISC) for screening of undiagnosed type 2 diabetes mellitus and dysglycaemia in primary care. Prim Care Diabetes. 2020; 14(5):494-500. DOI: 10.1016/j.pcd.2020.02.008
Heltberg A, Andersen JS, Sandholdt H, Siersma V, Kragstrup J, Ellervik C. Predictors of undiagnosed prevalent type 2 diabetes - The Danish General Suburban Population Study. Prim Care Diabetes. 2018; 12(1):13-22. DOI: 10.1016/j.pcd.2017.08.005
Silvestre MP, Jiang Y, Volkova K, Chisholm H, Lee W, Poppitt SD. Evaluating FINDRISC as a screening tool for type 2 diabetes among overweight adults in the PREVIEW:NZ cohort. Prim Care Diabetes. 2017; 11(6):561-9. DOI: 10.1016/j.pcd.2017.07.003
Stiglic G, Wang F, Sheikh A, Cilar L. Development and validation of the type 2 diabetes mellitus 10-year risk score prediction models from survey data. Prim Care Diabetes. 2021; 15(4):699-705. DOI: 10.1016/j.pcd.2021.04.008
Awad SF, Dargham SR, Toumi AA, Dumit EM, El-Nahas KG, Al-Hamaq AO, et al. A diabetes risk score for Qatar utilizing a novel mathematical modeling approach to identify individuals at high risk for diabetes. Sci Rep. 2021; 11(1):1811. DOI: 10.1038/s41598-021-81385-3
Sinn DH, Kang D, Cho SJ, Paik SW, Guallar E, Cho J, et al. Enfermedad del hÃgado graso no alcohólico magro y desarrollo de diabetes: un estudio de cohorte. Eur J Endocrinol. 2019; 181(2):185-92. DOI: 10.1530/EJE-19-0143
Ming Z, Bingyuan W, Yu L, Xizhuo S, Xinping L, Chongjian W, et al. Cumulative increased risk of incident type 2 diabetes mellitus with increasing triglyceride glucose index in normal-weight people: The Rural Chinese Cohort Study. Cardiovasc Diabetol 2017; 16:30. DOI: 10.1186/s12933-017-0514-x
Enlaces refback
- No hay ningún enlace refback.
URL de la licencia: https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es