Predictive index of ischemic heart disease in people with diabetes mellitus
Keywords:
risk factors, ischemic heart disease, diabetes mellitus, prediction index.Abstract
Introduction: Individuals with diabetes mellitus have a risk of ischemic heart disease 2 to 4 times higher than that observed in the general population.Objective: To design an index, based on the identified risk factors, to predict the development of ischemic heart disease in patients with diabetes mellitus.
Methods: An analytical case-control study was carried out in 330 patients with diabetes mellitus. The index was derived from binary logistic regression analysis of cardiovascular risk factors.
Results: The proposed index showed a high morbidity in the categories of high risk (48.9%) and very high risk (100%). Likewise, their mean values were significantly higher in patients with ischemic heart disease compared to those who did not develop it (7.98 x 3.67; p= 0.000). The ROC curve of the proposed index has a good ability to discriminate patients who will have ischemic heart disease from those who will not develop the disease (0.902; p= 0.000).
Conclusions: The proposed index is capable of predicting the development of ischemic heart disease in patients with diabetes mellitus.
Downloads
References
2. Harding JL, Pavkov ME, Magliano DJ, Shaw JE, y Gregg EW. Global trends in diabetes complications: a review of current evidence. Diabetologia.2019 [acceso: 15/02/2022]; 62(1): 3-16. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30171279/
3. Cosentino FJ, Grant P, Aboyans VJ, Bailey C, Ceriello A, Delgado V, et al. Guía ESC 2019 sobre diabetes, prediabetes y enfermedad cardiovascular, en colaboración con la European Association for the Study of Diabetes (EASD). Rev Esp Cardiol. 2020 [acceso: 22/07/2022]; 73(5):404.e1-404.e59. Disponible en: https://doi.org/10.1016/j.recesp.2019.11.011
4. Chowdhury MZ, Yeasmin F, Rabi DM, Ronksley PE, Turin TC. Prognostic tools for cardiovascular disease in patients with type 2 diabetes: A systematic review and meta-analysis of C-statistics. Journal of Diabetes and its Complications. 2019; 33(1):98-111. DOI: 10.1016/j.jdiacomp.2018.10.010
5. Morales-Pérez C, León-Regal M, Álvarez-Hernández R, Brito-Pérez-de-Corcho Y, de-Armas-García J, Muñoz-Morales A. Valor predictivo del cálculo de riesgo cardiovascular global. Revista Finlay. 2017 [acceso: 28/08/2022]; 7(4):[aprox. 7 p.]. Disponible en: http://revfinlay.sld.cu/index.php/finlay/article/view/466
6. Thygesen K, Alpert J, Jaffe A, Chaitman B, Bax J, Morrow DA, et al. Consenso ESC 2018 sobre la cuarta definición universal del infarto de miocardio. Rev Esp Cardiol. 2019 [acceso: 15/02/2022]; 72(1):72.e1-72.e27. Disponible en: https://www.revespcardiol.org/es-pdf-S0300893218306365
7. Grupo de Trabajo de la Sociedad Europea de Cardiología (ESC) sobre el diagnóstico y el tratamiento de los síndromes coronarios crónicos. Guía ESC 2019 sobre el diagnóstico y tratamiento de los síndromes coronarios crónicos. Rev Esp Cardiol. 2020 [acceso: 15/02/2022]; 73(6): 495.e1-495.e61. Disponible en: https://www.revespcardiol.org/es-pdf-S0300893220301007
8. Arrieta F, Iglesias P, Botet J P, Becerra A, Ortega E, Obaya JC, et al. Diabetes mellitus y riesgo cardiovascular. Actualización de las recomendaciones del Grupo de Trabajo de Diabetes y Riesgo Cardiovascular de la Sociedad Española de Diabetes (SED, 2018). Clínica e Investigación en Arteriosclerosis. 2018 [acceso: 15/02/2022]; 30(3):137-53. Disponible en: https://www.elsevier.es/es-revista-clinica-e-investigacion-arteriosclerosis-15-articulo-diabetes-mellitus-riesgo-cardiovascular-actualizacion-S0214916818300330
9. Laiteerapong N, Ham SA, Gao Y, Moffet HH, Liu JY, Huang ES, Karter AJ. The legacy effect in type 2 diabetes: impact of early glycemic control on future complications (the Diabetes & Aging Study). Diabetes Care. 2019 [acceso: 15/02/2022]; 42(3):416-26. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6385699/
10. Kosiborod M, Gomes M B, Nicolucci A, Pocock S, Rathmann W, Shestakova M V, et al. Vascular complications in patients with type 2 diabetes: prevalence and associated factors in 38 countries (the DISCOVER study program). Cardiovascular Diabetology. 2018; 17(1):150. DOI: 10.1186/s12933-018-0787-8
11. Gurka MJ, Guo Y, Filipp SL, DeBoer MD. Metabolic syndrome severity is significantly associated with future coronary heart disease in Type 2 diabetes. Cardiovasc Diabetol. 2018; 17(1):17. DOI: 10.1186/s12933-017-0647-y
12. Śliwińska-Mossoń M, Milnerowicz H. The impact of smoking on the development of diabetes and its complications. Diab Vasc Dis Res. 2017 [acceso: 15/02/2022]; 14(4):265-76. Disponible en: https://pubmed.ncbi.nlm.nih.gov/28393534/
13. Minutolo R, Gabbai FB, Provenzano M, Chiodini P, Borrelli S, Garofalo C, et al. Cardiorenal prognosis by residual proteinuria level in diabetic chronic kidney disease: pooled analysis of four cohort studies. Nephrol Dial Transplant. 2018 [acceso: 15/02/2022]; 33(11): 1942-9. Disponible en: https://pubmed.ncbi.nlm.nih.gov/29509925/
14. Félix-Redondo FJ, Subirana I, Baena-Diez JM, Ramos R, Cancho B, Fernández Bergés D, et al. Importancia pronóstica de la enfermedad arterial periférica diagnosticada mediante el índice tobillo-brazo en población general española. Aten Primaria. 2020 [acceso: 15/02/2022]; 52(9):627-36. Disponible en: https://www.sciencedirect.com/science/article/pii/S0212656720301062
15. Kawel-Boehm N, Kronmal R, Eng J, Folsom A, Burke G, Carr JJ, et al. Left Ventricular Mass at MRI and Long-Term Risk of Cardiovascular Events: The Multi-Ethnic Study of Atherosclerosis (MESA). Radiology. 2019 [acceso: 15/02/2022]; 293(1):107-14. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6776886/
16. Anderson KM, Wilson PWF, Odell PM, Kannel WB. An updated coronary risk profile. A statement por Health professionals. Circulation. 1991; 83:356-62. DOI: 10.1161/01.cir.83.1.356
17. Conroy RM, Pyörälä K, Fitzgerald AP, Sans S, Menotti A, de Bac-ker G, et al. SCORE project group. Estimation of ten-year riskof fatal cardiovascular disease in Europe: The SCORE project. Eur Heart J. 2003; 24:987-1003. DOI: 10.1016/s0195-668x(03)00114-3
18. Chowdhury M Z I, Yeasmin F, Rabi D M, Ronksley P, Turin T. Predicting the risk of stroke among patients with type 2 diabetes: a systematic review and meta-analysis of C-statistics. BMJ Open. 2019; 9(8):e025579. DOI: 10.1136/bmjopen-2018-025579
19. Stevens RJ, Kothari V, Adler AI, Straton IM, Holman RR. United Kingdom Prospective Diabetes Study (UKPDS) Group. The UKDPS risk engine: A model for the risk of coronary heart disease in Type II diabetes (UKPDS 56). Clin Sci (Lon). 2001 [acceso: 22/07/2022]; 101:617-9. Disponible en: https://doi.org/10.1042/cs1010671
20. Kengne AP, Patel A, Marre M, Travert F, Lievre M, Zoungas S, et al. Contemporary model for cardiovascular risk prediction in people with type 2 diabetes. European Journal of Cardiovascular Prevention & Rehabilitation. 2011; 18(3):393-98. DOI: 10.1177/1741826710394270
Published
How to Cite
Issue
Section
License
Authors who have publications with this Journal accept the following terms:
- The authors will retain their copyright and guarantee the Journal the right of first publication of their work, which will simultaneously be subject to the Creative Commons Attribution License. The content presented here can be shared, copied and redistributed in any medium or format; Can be adapted, remixed, transformed or created from the material, using the following terms: Attribution (giving appropriate credit to the work, providing a link to the license, and indicating if changes have been made); non-commercial (you cannot use the material for commercial purposes) and share-alike (if you remix, transform or create new material from this work, you can distribute your contribution as long as you use the same license as the original work).
- The authors may adopt other non-exclusive license agreements for the distribution of the published version of the work (for example: depositing it in an institutional electronic archive or publishing it in a monographic volume) as long as the initial publication in this Journal is indicated.
- Authors are allowed and recommended to disseminate their work through the Internet (e.g., in institutional electronic archives or on their website) before and during the submission process, which can produce interesting exchanges and increase citations. of the published work.