Model for patient flow management, validated in a general surgery service
Keywords:
health administration, general surgery, computer simulation, patient simulation, patient transfer.Abstract
Introduction: Patient flow modeling is considered a key tool for the analysis and improvement of in-hospital trajectories.
Objective: To develop and validate a mathematical model for the patient flows management in hospital in a General Surgery service.
Methods: A descriptive quantitative research was developed. Different management models were analyzed and gaps to be solved were identified. For its conception, a methodological procedure was designed that takes into account the grouping of patients in Major Diagnostic Categories according to homogeneous clinical characteristics and similar resource consumption.
Results: Insufficient patient flow management was identified as the main problem. A mathematical model of discrete simulation was built and validated by comparing real data from the service and the subjective opinions of specialists. It was identified that the limiting resources of the system are nurses and beds with utilization percentages of 93.377 % and 89.265 % respectively.
Conclusions: A model for the patient flows management in the General Surgery service is developed and its influence on the analysis, decision-making process and management improvement is demonstrated.
Downloads
References
2. Manning L, Islam S. A systematic review to identify the challenges to achieving effective patient flow in public hospitals. Int J Health Plann Mgmt. 2023;38(3): 805-828. DOI: 10.1002/hpm.3626
3. Dawoodbhoy FM, Delaney J, Cecula P, Yu J, Peacock I, Tan J, et al. AI in patient flow: applications of artificial intelligence to improve patient flow in NHS acute mental health inpatient units. Heliyon. 2021;7(5):[aprox. 18 pant.]. DOI: 10.1016/j.heliyon.2021.e06993
4. Duarte Forero EL, Camacho Oliveros MÁ. Planeación de la capacidad hospitalaria: un enfoque desde el flujo de pacientes con Dinámica de Sistemas. INGE CUC. 2020;16(1):217-233. DOI: 10.17981/ingecuc.16.1.2020.16
5. Sánchez Suárez Y, Marqués León M, Hernández Nariño A, Suárez Pérez M. Metodología para el diagnóstico de la gestión de trayectorias de pacientes en hospitales. Región Científica. 2023;2(2): [aprox. 18 pant.]. DOI: 10.58763/rc2023115
6. Sánchez Suárez Y. Instrumento metodológico para la gestión de flujos de pacientes en instituciones hospitalarias. [Tesis de doctorado]. Matanzas, Cuba: Universidad de Matanzas. 2023 [acceso: 28/09/2023]. Disponible en: https://rein.umcc.cu/handle/123456789/1949
7. Sánchez-Suárez Y, Marqués-León M, Hernández-Nariño A, Santos-Pérez O. Modelación de los flujos de pacientes de alto riesgo con COVID-19 en Matanzas con enfoque Lean. Revista Médica Electrónica. 2023 [acceso: 28/09/2023];45(4):629-643. Disponible en: http://scielo.sld.cu/pdf/rme/v45n4/1684-1824-rme-45-04-629.pdf
8. Arévalo Zurita M, Expósito García E, Apez Arévalo I. Gestión empresarial y prácticas de equidad e igualdad de género: el caso de la empresa Agroforestal Cafetalera Tercer Frente. Región Científica. 2023;2(2):[aprox. 9 pant.]. DOI: 10.58763/rc202375
9. Marqués León M, Negrin Sosa E, Hernández Nariño A, Nogueira Rivera D, Medina León A. Modelo para la planificación de medicamentos y materiales de uso médico en instituciones hospitalarias. Gestión y política pública. 2017 [acceso: 28/09/2023];26(SPE):79-124. Disponible en: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-10792017000300079
10. Kelton WD. Simulación con software Arena. México: McGraw-Hill; 2008. [acceso: 28/10/2023]. Disponible en: https://catalogosiidca.csuca.org/Record/UNI.7045details
11. Eslava Zapata R, Chacón Guerrero E, Gómez Ortiz E, Mogrovejo Andrade J. Toma de decisiones en las organizaciones: procesos y herramientas. Data y Metadata. 2022;1:19-24. DOI: 10.56294/dm202219
12. Medina León SV, Medina Palomera A, González Ángeles Á. Reducir tiempos de espera de pacientes en el departamento de emergencias de un hospital utilizando simulación. Industrial Data. 2010 [acceso: 28/09/2023];13(1):67-76. Disponible en: http://www.redalyc.org/articulo.oa?id=81619989010
13. Basaglia A, Spacone E, van de Lindt JW, Kirsch TD. A Discrete-Event Simulation Model of Hospital Patient Flow Following Major Earthquakes. International Journal of Disaster Risk Reduction. 2022;71(5):[aprox. 9 pant.]. DOI: 10.1016/j.ijdrr.2022.102825
14. Ouda E, Sleptchenko A, Simsekler MCE. Comprehensive review and future research agenda on discrete-event simulation and agent-based simulation of emergency departments. Simulation Modelling Practice and Theory. 2023;129(7):[aprox. 23 p]. DOI: 10.1016/j.simpat.2023.102823
15. Jiménez Romero C, Tisnés A, Linares S. Modelo de simulación del COVID-19 basado en agentes. Aplicación al caso argentino. Posición. 2020 [acceso: 28/09/2023];3:1-22. Disponible en: https://ri.conicet.gov.ar/bitstream/handle/11336/107719/CONICET_Digital_Nro.35741ff1-2717-42c6-8a86-4be3970462be_A.pdf?sequence=2&isAllowed=y
16. Sánchez Suárez Y, Gómez Pérez M, Maynoldi Pino K, Marqués León M, Hernández Nariño A, Santos Pérez O. Contribución al perfeccionamiento del proceso de gestión de ingreso de pacientes con covid-19. Revista Cubana de Administración Pública y Empresarial. 2021;5(3):[aprox. 19 pant.]. DOI: 10.5281/zenodo.5759637
Published
How to Cite
Issue
Section
License
Authors who have publications with this Journal accept the following terms:
- The authors will retain their copyright and guarantee the Journal the right of first publication of their work, which will simultaneously be subject to the Creative Commons Attribution License. The content presented here can be shared, copied and redistributed in any medium or format; Can be adapted, remixed, transformed or created from the material, using the following terms: Attribution (giving appropriate credit to the work, providing a link to the license, and indicating if changes have been made); non-commercial (you cannot use the material for commercial purposes) and share-alike (if you remix, transform or create new material from this work, you can distribute your contribution as long as you use the same license as the original work).
- The authors may adopt other non-exclusive license agreements for the distribution of the published version of the work (for example: depositing it in an institutional electronic archive or publishing it in a monographic volume) as long as the initial publication in this Journal is indicated.
- Authors are allowed and recommended to disseminate their work through the Internet (e.g., in institutional electronic archives or on their website) before and during the submission process, which can produce interesting exchanges and increase citations. of the published work.