Diagnostic of the Ada Test Risk Score and the Peruvian Risk Score as screening for prediabetes
Keywords:
prediabetes, diabetes, screening, primary prevention, Perú.Abstract
Introduction: Prediabetes in great majority will develop into diabetes mellitus; therefore, early detection through screening tests is important.Objective: To estimate the accuracy of the ADA Risk Test and the Peruvian Risk Test as a screening for prediabetes.
Methods: Cross-sectional study of diagnostic tests. For the diagnosis of prediabetes, fasting glucose was extracted as the reference test. To evaluate the discriminative diagnostic performance, the graph of the receiver's operating characteristic curves was produced, which was presented with the area under the curve, and the sensitivity was taken into account to determine the cut-off point. Confidence intervals at 95% are calculated. We worked with a total of 441 subjects.
Results: The prevalence of prediabetes was 14.29%. The cut-off point of the ADA Risk Test was 4. This had an area under the curve of 0.79 (CI95%: 0.75 - 0.83) and a sensitivity of 93.7% (CI95%: 84.5 - 98.2). While for the Peruvian Risk Test a cutoff of 2 was chosen. The area under the curve was 0.72 (CI95%: 0.67 - 0.78) and the sensitivity was 79.4 (CI95%: 67.3 - 88.5).
Conclusions: The ADA Risk Test, with a cut-off point of 4, outperforms the Peruvian Risk Test as a screening method for prediabetes. If these results are confirmed in other prospective studies, its use can be recommended in areas where there is little access to laboratory analysis.
Downloads
References
2. Carris NW, Magness RR, Labovitz AJ. Prevention of Diabetes Mellitus in Patients With Prediabetes. Am J Cardiol. 2019; 123(3):507-12. DOI: 10.1016/j.amjcard.2018.10.032
3. Carrillo-Larco RM, Bernabé-Ortiz A. Diabetes mellitus tipo 2 en Perú: una revisión sistemática sobre la prevalencia e incidencia en población general. Rev Peru Med Exp Salud Publica. 2019; 36(1):26-36. DOI: 10.17843/rpmesp.2019.361.4027
4. Tabák AG, Herder C, Rathmann W, Brunner EJ, Kivimäki M. Prediabetes: a high-risk state for diabetes development. Lancet Lond Engl. 2012; 379(9833):2279-90. DOI: 10.1016/S0140-6736(12)60283-9
5. Serrano R, García-Soidán FJ, Díaz-Redondo A, Artola S, Franch J, Díez J, et al. Estudio de cohortes en atención primaria sobre la evolución de sujetos con prediabetes (PREDAPS): Fundamentos y metodología. Rev Esp Salud Pública. 2013; 87(2):121-35. DOI: 10.4321/S1135-57272013000200003
6. Mainous AG, Tanner RJ, Baker R. Prediabetes Diagnosis and Treatment in Primary Care. J Am Board Fam Med JABFM. 2016; 29(2):283-5. DOI:10.3122/jabfm.2016.02.150252
7. Costa À, Yuri A, Solà J, Conget I. Detección de la diabetes mellitus en consultas externas hospitalarias. Utilidad de un cuestionario de cribado. Med Clínica. 2003; 120(8):287-91.DOI: 10.1016/S0025-7753(03)73679-3
8. Duan D, Kengne AP, Echouffo-Tcheugui JB. Screening for Diabetes and Prediabetes. Endocrinol Metab Clin North Am. 2021; 50(3):369-85. DOI:10.1016/j.ecl.2021.05.002
9. Zhou X, Qiao Q, Ji L, Ning F, Yang W, Weng J, et al. Nonlaboratory-based risk assessment algorithm for undiagnosed type 2 diabetes developed on a nation-wide diabetes survey. Diabetes Care. 2013; 36(12):3944-52. DOI:10.2337/dc13-0593
10. Wong CKH, Siu S-C, Wan EYF, Jiao F-F, Yu EYT, Fung CSC, et al. Simple non-laboratory- and laboratory-based risk assessment algorithms and nomogram for detecting undiagnosed diabetes mellitus. J Diabetes. 2016; 8(3):414-21. DOI:10.1111/1753-0407.12310
11. Lemieux CL, deGroh M, Gibbons L, Morrison H, Jiang Y. A Tool to Assess Risk of Type 2 Diabetes in Canadian Adults. Can J Diabetes. 2020; 44(5):445-7. DOI: 10.1016/j.jcjd.2020.03.002
12. Heianza Y, Arase Y, Saito K, Hsieh SD, Tsuji H, Kodama S, et al. Development of a screening score for undiagnosed diabetes and its application in estimating absolute risk of future type 2 diabetes in Japan: Toranomon Hospital Health Management Center Study 10 (TOPICS 10). J Clin Endocrinol Metab. 2013; 98(3):1051-60. DOI: 10.1210/jc.2012-3092
13. Wu J, Hou X, Chen L, Chen P, Wei L, Jiang F, et al. Development and validation of a non-invasive assessment tool for screening prevalent undiagnosed diabetes in middle-aged and elderly Chinese. Prev Med. 2019; 119:145-52. DOI: 10.1016/j.ypmed.2018.12.025
14. Association AD. 3. Prevention or Delay of Type 2 Diabetes: Standards of Medical Care in Diabetes-2020. Diabetes Care. 2020; 43(Supplement 1):S32-6. DOI: 10.2337/dc20-S003
15. Bernabe-Ortiz A, Smeeth L, Gilman RH, Sanchez-Abanto JR, Checkley W, Miranda JJ, et al. Development and Validation of a Simple Risk Score for Undiagnosed Type 2 Diabetes in a Resource-Constrained Setting. J Diabetes Res. 2016; 2016:e8790235. DOI: 10.1155/2016/8790235
16. Poltavskiy E, Kim DJ, Bang H. Comparison of screening scores for diabetes and prediabetes. Diabetes Res Clin Pract. 2016; 118:146-53. DOI: 10.1016/j.diabres.2016.06.022
17. Bang H, Edwards A, Bomback A, Ballantyne C, Brillon D, Callahan M, et al. Development and validation of a patient self-assessment score for diabetes risk. Ann Intern Med. 2009; 151(11):775-83. DOI: 10.7326/0003-4819-151-11-200912010-00005
18. Vera-Ponce VJ, Liy JEO, Valladares-Garrido MJ. Validez de la prueba de riesgo de la Asociación Americana de Diabetes como cribado para prediabetes en una muestra de trabajadores peruanos. Rev Fac Med Humana. 2021; 21(3): 30-3. DOI:10.25176/RFMH.v21i3.3614
19. Bernabe-Ortiz A, Perel P, Miranda JJ, Smeeth L. Diagnostic accuracy of the Finnish Diabetes Risk Score (FINDRISC) for undiagnosed T2DM in Peruvian population. Prim Care Diabetes. 2018; 12(6):517-25. DOI: 10.1016/j.pcd.2018.07.015
20. Setia MS. Methodology Series Module 5: Sampling Strategies. Indian J Dermatol. 2016; 61(5):505-9. DOI: 10.4103/0019-5154.190118
21. Albitres-Flores L, Bernabe-Ortiz A. Diagnostic accuracy of ADA 2020 criteria for undiagnosed diabetes in a Peruvian population. Diabetes Res Clin Pract. 2020; 169:108475. DOI: 10.1016/j.diabres.2020.108475
22. Galaviz KI, Schneider MF, Tien PC, Mehta CC, Ofotokun I, Colasanti J, et al. Predicting diabetes risk among HIV-positive and HIV-negative women. AIDS Lond Engl. 2018; 32(18):2767-75. DOI: 10.1097/QAD.0000000000002017
23. Prabhu G, Poovitha M. To Determine the Usefulness of ADA Risk Score to Predict T2dm/Pre Diabetes in South Indian Rural Population. International Journal of Contemporary Medical Research. 2019 [acceso: 27/09/2021]; 6(8):27-30. Disponible en: https://imsear.searo.who.int/bitstream/123456789/202500/1/ijcmr2019-v6n8pah27.pdf
24. Woo Y, Lee C, Fong C, Tso A, Cheung B, Lam K. Validation of the diabetes screening tools proposed by the American Diabetes Association in an aging Chinese population. PloS One. 2017; 12(9):e0184840. DOI: 10.1371/journal.pone.0184840
25. Agarwal G, Guingona MM, Gaber J, Angeles R, Rao S, Cristobal F. Choosing the most appropriate existing type 2 diabetes risk assessment tool for use in the Philippines: a case-control study with an urban Filipino population. BMC Public Health. 2019; 19(1):1169. DOI: 10.1186/s12889-019-7402-0
26. Scanlan AB, Maia CM, Perez A, Homko CJ, O'Brien MJ. Diabetes Risk Assessment in Latinas: Effectiveness of a Brief Diabetes Risk Questionnaire for Detecting Prediabetes in a Community-Based Sample. Diabetes Spectr Publ Am Diabetes Assoc. 2018; 31(1):31-6. DOI: 10.2337/ds16-0051
27. Harbuwono DS, Mokoagow MI, Magfira N, Helda H. ADA Diabetes Risk Test Adaptation in Indonesian Adult Populations: Can It Replace Random Blood Glucose Screening Test? J Prim Care Community Health. 2021; 12:21501327211021016. DOI: 10.1177/21501327211021015
28. Sheng Z, Cao J-Y, Pang Y-C, Xu H-C, Chen J-W, Yuan J-H, et al. Effects of Lifestyle Modification and Anti-diabetic Medicine on Prediabetes Progress: A Systematic Review and Meta-Analysis. Front Endocrinol. 2019; 10:455. DOI:10.3389/fendo.2019.00455
29. Khunti K, Mani H, Achana F, Cooper N, Gray LJ, Davies MJ. Systematic Review and Meta-Analysis of Response Rates and Diagnostic Yield of Screening for Type 2 Diabetes and Those at High Risk of Diabetes. PloS One. 2015; 10(9):e0135702. DOI:10.1371/journal.pone.0135702
Published
How to Cite
Issue
Section
License
Authors who have publications with this Journal accept the following terms:
- The authors will retain their copyright and guarantee the Journal the right of first publication of their work, which will simultaneously be subject to the Creative Commons Attribution License. The content presented here can be shared, copied and redistributed in any medium or format; Can be adapted, remixed, transformed or created from the material, using the following terms: Attribution (giving appropriate credit to the work, providing a link to the license, and indicating if changes have been made); non-commercial (you cannot use the material for commercial purposes) and share-alike (if you remix, transform or create new material from this work, you can distribute your contribution as long as you use the same license as the original work).
- The authors may adopt other non-exclusive license agreements for the distribution of the published version of the work (for example: depositing it in an institutional electronic archive or publishing it in a monographic volume) as long as the initial publication in this Journal is indicated.
- Authors are allowed and recommended to disseminate their work through the Internet (e.g., in institutional electronic archives or on their website) before and during the submission process, which can produce interesting exchanges and increase citations. of the published work.