Inhaled and intravenous anesthetics, their effect on the oxidative stress generated by the anesthetic-surgical act

Authors

Keywords:

oxidative stress, general anesthesia, reactive oxygen species, free radicals, perioperative period.

Abstract

Introduction: Oxidative stress occurs when the production of reactive oxygen species exceeds cellular protection by antioxidants. This paper focuses on oxidative stress induced by general anesthesia, because it increases the rate of complications and delays in recovery.
Objective: To determine how the anesthetics used to induce and maintain general anesthesia affect the oxidative stress that is generated during the trans-operative period.
Development: It is based on a review of scientific articles on oxidative stress during the surgical anesthetic act. Intravenous anesthetics generally maintain oxidative stress markers at values close to normal, and act as modulators of surgical, oxidative stress and inflammation, blocking the mechanisms of production of reactive oxygen species. Inhaled anesthetics modify these biomarkers when surgical interventions exceed 2 hours. General anesthetics cause oxidative stress depends on the exposure time and duration of anesthesia, although it has been shown that intravenous anesthetics are protective, while volatile anesthetics trigger it, but only in major, prolonged surgeries.
Conclusion: The surgical anesthetic act is a complex process, in which numerous factors converge that can cause an increase in the levels of reactive oxygen species, generating a picture of oxidative stress that can affect the final result of the surgery, but if a strategy is devised that uses anesthetics with protective action against oxidative stress, better results can be obtained in the surgical process.

Downloads

Download data is not yet available.

References

1. Kundovi A, Rašić D, Popović D, Peraica M, Popoic L, Crniar K. Oxidative stress under general intravenous and inhalation anaesthesia. Archives of Industrial Hygiene and Toxicology. 2022; 71(3):169-77. DOI: 10.2478/aiht-2020-71-3437

2. Martín Velasco AI. Respuesta de las gonadotropinas al estrés: papel de las catecolaminas [Tesis Doctoral]. Madrid: Universidad Complutense, Facultad de Ciencias Médicas; 2019 [acceso: 18/11/2022]. Disponible en: https://eprints.ucm.es/id/eprint/3960/

3. Fernández Alvarez N. Efectos antiinflamatorios de los anestésicos intravenosos y su implicación clínica en pacientes sometidos a cirugía mayor [Tesis de maestría]. Costa Rica: Universitaria Rodrigo Facio, Facultad de Ciencias Biomédicas y de la Salud; 2020 [acceso: 18/11/2022]. Disponible en: https://hdl.handle.net/10669/82097

4. Collin F. Chemical Basis of Reactive Oxygen Species Reactivity and Involvement in Neurodegenerative Diseases. International Journal of Molecular Sciences. 2019 [acceso: 18/11/2022]; 20(10):2407. Disponible en: https://www.mdpi.com/1422-0067/20/10/2407

5. Corpa Arenas JM. Relato de un conflicto global a escala microscópica: la respuesta inflamatoria frente a patógenos: Inauguración Curso Académico 2018-2019. Madrid: Universidad San Pablo; 2018. [acceso: 18/11/2022]. Disponible en: https://repositorioinstitucional.ceu.es/handle/10637/10090

6. Guzmán Martínez JK, Vasallo Comendeiro VJ, Abreu Brioso GL. Estrés oxidativo durante el acto anestésico-quirúrgico. Rev Cubana Anestesiología y Reanimación. 2022 [acceso: 18/11/2022]; 21(3):[aprox. 5 p.]. Disponible en: http://www.revanestesia.sld.cu/index.php/anestRean/article/view/824

7. Nociti JR, Sergio M, Zuculotto E, Leaes L, Delbin A. Clínicas da lndução Anestésica e da lntubação Traqueal com Propofol. Brazilian Journal of Anesthesiology. 2020 [acceso: 18/11/2022]; 40(6):385-90. Disponible en: https://pesquisa.bvsalud.org/portal/resource/pt/lil-198042

8. Fernández Álvarez N. Efectos antiinflamatorios de los anestésicos intravenosos y su implicación clínica en pacientes sometidos a cirugía mayor [Tesis de maestría]. Costa Rica: Universidad de Costa Rica; 2020 [acceso: 18/11/2022]. Disponible en: https://hdl.handle.net/10669/82097

9. Mesut E, Demiraran Y, Yildirim A H, Sezen G, Iskender A, Karagoz I, et al. Comparación de los efectos de la perfusión de sevoflurano, desflurano y del propofol sobre el sistema oxidante/antioxidante durante la anestesia general. Revista Brasileira de Anestesiologia. 2015; 65(1):68-72. DOI: 10.1016/j.bjane.2014.05.004

10. Salazar LK, Abad Torrent A. Ketamina y su indicación en el dolor agudo postoperatorio. Revista electrónica Anestesia R. 2018 [acceso: 18/11/2022]; 10(4):1. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=8425810

11. Hatipoglu S, Yildiz H, Bulbuloglu E, Coskuner I, Kurutas EB. Protective effects of intravenous anesthetics on kidney tissue in obstructive jaundice. World J Gastroenterolgy. 2014; 20(12):3320-6. DOI: 10.3748/wjg.v20.i124

12. Sánchez Porras R, Kendar M, Zerelles R, Geyer M, Trenado C, Harting J, et al. Eighteen-hour inhibitory effect of s-ketamine on potassium and ischemia induced spreading depolarizations in the gyrencephalic swine brain. Neuropharmacology. 2022; 216:109176. DOI: 10.1016/j.neuropharm.2022.109176

13. Moritz Duarte R, Duarte Trias P. lnfecçãoem Pacientes com Traumatismo CranioencefálicoFazendo Uso de Tiopental. Brazilian Journal of Anesthesiology. 2020 [acceso: 19/11/2022]; 41(2):133-7. Disponible en: https://www.bjansba.org/article/5e498b960aec5119028b46e9/pdf/rba-41-2-133.pdf

14. Cárdenas Torres Y, Redondo Gomez Z, Segura Llanes N. Factores perioperatorios, inmunidad y recurrencia del cáncer. Rev Cuba Anestesiol Reanim. 2020 [acceso: 19/11/2022]; 19(3):e606. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1726-67182020000300012&lng=es

15. Cayón Blanco M, Vidal Suárez A, Ballesteros Martín-Portugués A. Insuficiencia suprarrenal. Medicine - Programa de Formación Médica Continuada Acreditado. 2020; 13(19):1049-60. DOI: 10.1016/j.med.2020.10.010

16. Li R, Fan L, Ma F, Cao Y, Gao J, Liu H, Li Y. Effect of etomidate on the oxidative stress response and levels of inflammatory factors from ischemia-reperfusion injury after tibial fracture surgery. Exp Ther Med. 2018; 13(3):971-5. DOI: 10.3892/etm.2017.4037

17. Manzo García I. Análisis de costo-efectividad entre dexmedetomidina intranasal y midazolam oral como premedicación en paciente pediátrico sometido a cirugía electiva [Tesis para obtener el título de especialista en Anestesiología]. Veracruz: Universidad Veracruzana, Facultad de Ciencias Médicas; 2017 [acceso: 19/11/2022]. Disponible en: http://cdigital.uv.mx/handle/1944/49202

18. Beltrán González AN. Modulación de los receptores GABA Ap1 por especies reactivas del oxígeno y be-nzodiazepinas [Tesis Doctoral]. Buenos Aires: Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales; 2014 [acceso: 19/11/2022]. Disponible en: http://hdl.handle.net/20.500.12110/tesis_n5761_BeltranGonzalez

19. Liu JY, Guo F, Wu HL, Wang Y, Liu JS. Midazolam anesthesia protects neuronal cells from oxidative stress-induced death via activation of the JNK-ERK pathway. Mol Med Rep. 2017; 15(1):169-79. DOI: 10.3892/mmr.2016.6031

20. Harkouk, H. Farmacología de los opioides. EMC-Anestesia-Reanimación. 2018 [acceso: 19/11/2022]; 44(2):1-24. DOI: 10.13140/RG.2.1.4839.4324

21. Torregroza C, Raupach A, Feige K, et al. Perioperative cardioprotection of opioid: general mechanisms and pharmacological approaches. Anesthesia & Analgesia. 2020 [acceso: 19/11/2022]; 131(6):1765-80. Disponible en: https://www.ingentaconnect.com/content/wk/ane/2020/00000131/00000006/art00029

22. Álvarez Y, Farré M. Farmacología de los opioides. Adicciones. 2005 [acceso: 19/11/2022]; 17(2):21-40. Disponible en: https://www.redalyc.org/pdf/2891/289122022016.pdf

23. Tardelli MA, Munechika M, Iwata N M, Falcao N. Avaliação clínica do isoflurano. Brazilian Journal of Anesthesiology 2022 [acceso: 19/11/2022]; 38(4):277-81. Disponible en: https://www.bjan-sba.org/article/5e498b5e0aec5119028b45e7

24. Peng Y, Ying D, Haibo Z, Haoran X, Chunlin T, Xuejun Z. Comparison of inflammatory markers between the sevoflurane and isoflurane anesthesia in a rat model of liver ischemia/reperfusion injury. Elsevier. 2019; 51(6): 2071-75. DOI: 10.1016/j.transproceed.2019.04.022

25. Braz MG, Braz LG, Barbosa BS, Giacobino J, Orosz JEB, Salvadori DMF, et al. DNA damage in patients who underwent minimally invasive surgery under inhalation or intravenous anesthesia. Mutat Res. 2011; 726(2):51-4. DOI: 10.1016/j.mrgentox.2011.09.007

26. Fernández Alcantud J, Carretero PS, Roca AP, Perez ER. Inducción anestésica con sevoflurano libre de óxido nitroso en pediatría. Revista Española de Anestesiología y Reanimación. 2018 [acceso: 19/11/22]; 55(2):69-74. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0034935608705127

27. Cukurova Z, Cetingok H, Ozturk S, Gedikbasi A, Hergunsel O, Ozturk D, et al. DNA damage effects of inhalation anesthetics in human bronchoalveolar cells. Medicine (Baltimore). 2019 [acceso: 19/11/2022]; 98(32):e16518. DOI: 10.1097/MD.0000000000016518

28. Nogueira FR, Braz LG, Souza KM, Aun AG, Arruda NM, Carvalho LR, et al. Comparison of DNA damage and oxidative stress in patients anesthetized with desflurane associated or not with nitrous oxide: A prospective randomized clinical trial. Anesth Analg. 2018 [acceso: 19/11/2022]; 126(11):98205. DOI: 10.1213/ANE.0000000000002729

29. Kaye AD, Fox CJ, Padnos IW, Ehrhardt KP, Diaz JH, Cornett EM, et al. Pharmacologic considerations of anesthetic agents in pediatric patients: A comprehensive review. Anesthesiol Clin. 2017; 35(2):e73-e94. DOI: 10.1016/j.anclin.2017.01.012

30. Senoner T, Velik-Salchner C, Luckner G, Tauber H. Anesthesia-Induced Oxidative Stress: Are There Differences between Intravenous and Inhaled Anesthetics? Oxid Med Cell Longev. 2021; 2021:8782387. DOI: 10.1155/2021/8782387

31. White PF, Elvir Lazo OL. El óxido nitroso-un adyuvante rentable para anestesia general. Colombian Journal of Anestesiology. 2005; 33(4):289-90. Disponible en: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-33472005000400010&lng=en

32. Wrońska-Nofer T, Nofer JR, Jajte J, Dziubałtowska E, Szymczak W, Krajewski W, et al. Oxidative DNA damage and oxidative stress in subjects occupation ally exposed to nitrous oxide (N2O). Mutat Res. 2012; 731(1-2):58-63. DOI: 10.1016/j.mrfmmm.2011.10.010

33. Myles PS, Chan MTV, Kaye DM, McIlroy DR, Lau CW, Symons JA, et al. Effect of nitrous oxide anesthesia on plasma homocysteine and endothelial function. Anesthesiology. 2008; 109(4):657-63. DOI: 10.1097/ALN.0b013e31818629db

Published

2023-06-01

How to Cite

1.
Guzmán Martínez JK, Abreu Biroso GL, Vasallo Comendeiro V, Vizcaino Cesar M. Inhaled and intravenous anesthetics, their effect on the oxidative stress generated by the anesthetic-surgical act. Rev Cubana Med Milit [Internet]. 2023 Jun. 1 [cited 2025 Jan. 8];52(2):e02302397. Available from: https://revmedmilitar.sld.cu/index.php/mil/article/view/2397

Issue

Section

Review Article

Most read articles by the same author(s)