Epidermal growth factor and remarkable correlations in a case series COVID-19

Authors

Keywords:

biomarkers, epidermal growth factor, COVID-19.

Abstract

Introduction: Molecular links relate epidermal growth factor (EGF) to inflammatory phenomena. In the context of COVID-19, understanding the role of serum concentrations of EGF offered new possibilities for a better understanding of physiopathology and therapeutics.
Objective: To explore the behavior of serum EGF values in patients with COVID-19, as well as to determine possible significant correlations between EGF, and analytical and clinical parameters of interest.
Methods: Cross-sectional observational analytical study, in a series of COVID-19 cases that included 15 patients attended between august-september 2021. Variables included: Age, sex, comorbidities, respiratory rate, heart rate, hospital stay, neutrophils, lymphocytes, neutrophil-lymphocyte index. Summary measures: Absolute frequency, percentage, and the arithmetic mean were used. The statistical significance of observable differences between groups was explored with the chi-square test or Welch's t test with a= 0.05.
Results: Notable correlation observed are rEGF-age= -0.6211 (p= 0.0206) overall, with rEGF-age= 0.2998 (p= 0.4030) in critically ill patients and rEGF-age= -0.9607 (p= 0.0000) in patients with care report. In the case of correlation with neutrophils, this is observed in the case of the subset of critical patients (rEGF-PNN= -0.4471, p= 0.3524); in relation to respiratory rate and heart rate, remarkably strong correlations were observed in critically ill patients (rEGF-Rr= 0.8220, p= 0.1928; rEGF-Hr= -0.9285, p= 0.1207).
Conclusions: There is a plausible relationship between serum EGF values and COVID-19, with notably strong correlations for clinical parameters in the context of serious illness.

Downloads

References

1. Zhao C, Yang L, Zhou F, Yu Y, Du X, Xiang Y, et al. Feedback activation of EGFR is the main cause for STAT3 inhibition-irresponsiveness in pancreatic cancer cells. Oncogene. 2020; 39(20):3997-4013. DOI: 10.1038/s41388-020-1271-y

2. Dosch AR, Dai X, Reyzer ML, Mehra S, Srinivasan S, Willobee BA, et al. Combined Src/EGFR Inhibition Targets STAT3 Signal-ing and Induces Stromal Remodeling to Improve Survival in Pancreatic Cancer. Mol Cancer Res. 2020; 18(4):623-31. DOI: 10.1158/1541-7786.mcr-19-0741

3. Gadanec LK, McSweeney KR, Qaradakhi T, Ali B, Zulli A, Apostolopoulos V. Can SARS-CoV-2 Virus Use Multiple Receptors to Enter Host Cells. Int J Mol Sci. 2021; 22(3):992. DOI: 10.3390/ijms22030992

4. Yoo J, Rodriguez Perez CE, Nie W, Edwards RA, Sinnett-Smith J, Rozengurt E. TNF-a induces upregulation of EGFR expression and signaling in human colonic myofibroblasts. Am J Physiol Gastrointest Liver Physiol. 2012; 302(8):G805-14. DOI: 10.1152/ajpgi.00522.2011

5. Harrison PT, Vyse S, Huang PH. Rare epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer. Semin Cancer Biol. 2020; 61:167-79. DOI: 10.1016/j.semcancer.2019.09.015

6. Laudanski K, Okeke T, Hajj J, Siddiq K, Rader DJ, Wu J, et al. Longitudinal urinary biomarkers of immunological activation in covid-19 patients without clinically apparent kidney disease versus acute and chronic failure. Sci Rep. 2021; 11(1):19675. DOI: 10.1038/s41598-021-99102-5

7. Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Imanol. 2020; 20(6):363-74. DOI: 10.1038/s41577-020-0311-8

8. Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nature Reviews Immunology. 2020; 20(6):355-62. DOI: 10.1038/s41577-020-0353-y

9. Cuba. Ministerio de Salud Pública. Protocolo de Actuación Nacional para la Covid-19. Versión 1.7. La Habana: Minsap; 2021.

10. Ministerio de Salud Pública. Regulación D 03-21 Buenas Prácticas de Laboratorio Clínico. Centro para el Control Estatal de Medicamentos Equipos y Dispositivos médicos (CECMED). 2021. [acceso: 22/04/2021]. Disponible en: https://www.cecmed.cu/sites/default/files/adjuntos/Reglamentacion/ResRegBPLC%20-firmada.pdf

11. Borda Pérez M. Métodos Cuantitativos. Herramientas para la investigación en salud. 4a ed. Baranquilla: Universidad del Norte; 2014. 360 p.

12. World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013. 310(20):2191-4 DOI: 10.1001/jama.2013.281053

13. Ministerio de Salud Pública. Regulación 165-2000: Buenas Prácticas clínicas en Cuba. Centro para el Control Estatal de Medicamentos Equipos y Dispositivos médicos (CECMED). 2016. [acceso: 22/04/2021]. Disponible en: https://www.cecmed.cu/sites/default/files/adjuntos/Reglamentacion/regulacion_requi-sitos_registro_sanitario_biologicosmod.pdf

14. International Council for Harmonisation (ICH). ICH-E6 Good Clinical Practice (GCP). ICH; 2021. [acceso: 22/04/2021]. Disponible en: https://database.ich.org/sites/default/files/ICH_E6-R3_GCP-Principles_Draft_2021_0419.pdf

15. Abdelmageed MM, Kefaloyianni E, Arthanarisami A, Komaru Y, Atkinson JJ, Herrlich A. TNF or EGFR inhibition equally block AKI-to-CKD transition: opportunities for etanercept treatment. Nephrol Dial Transplant. 2023; 38(5):1139-50. DOI: 10.1093/ndt/gfac290

16. Idasiak-Piechocka I, Miedziaszczyk M, Wozniak A, Pawliczak E, Kaczmarek E, Oko A. Interleukin-6 and epidermal growth factor as noninvasive biomarkers of progression in chronic glomerulonephritis. Am J Physiol Cell Physiol. 2023; 325(5):1267-75. DOI: 10.1152/ajpcell.00058.2023

17. Schumacher N, Rose-John S. ADAM17 orchestrates Interleukin-6, TNFa and EGF-R signaling in inflammation and cancer. Biochim Biophys Acta Mol Cell Res. 2022; 1869(1):119141. DOI: 10.1016/j.bbamcr.2021.119141

18. Mendoza-Marí Y, García-Ojalvo A, Fernández-Mayola M, Rodríguez-Rodríguez N, Martinez-Jimenez I, Berlanga-Acosta J. Epidermal growth factor effect on lipopolysaccharide-induced inflammation in fibroblasts derived from diabetic foot ulcer. Scars Burn Heal. 2022; 8:1-11. DOI: 10.1177/20595131211067380

19. Idania G, Hassiul, CL, Adriana CP, Kalet LM. Measurement of Serum EGF Levels, a Methodological Approach: Learning What Means Low-/High-Concentration of EGF In Serum. Some Clinical Implications. J Mol Biomark Diagn. 2017; 8(3):1000335. DOI: 10.4172/2155-9929.1000335

20. Mathilde IK, Aalund OD, Alnor A, Brandslund I, Bechmann T, Madsen JK. EGFR and EGFR ligands in serum in healthy women; reference intervals and age dependency. Clin Chem Lab Med. 2019; 57(12):1948-55. DOI: 10.1515/cclm-2019-0376

21. Joh T, Itoh M, Katsumi K, Yokoyama Y, Takeuchi T, Kato T, et al. Physiological concentrations of human epidermal growth factor in biological fluids: use of a sensitive enzyme immunoassay. Clin Chim Acta. 1986; 158(1):81-90. DOI: 10.1016/0009-8981(86)90118-x

Downloads

Published

2024-06-28

How to Cite

1.
Pérez Hernández HJ. Epidermal growth factor and remarkable correlations in a case series COVID-19. Rev Cubana Med Milit [Internet]. 2024 Jun. 28 [cited 2025 Apr. 5];53(3):e024028646. Available from: https://revmedmilitar.sld.cu/index.php/mil/article/view/28646

Issue

Section

Clinical Practice Article