In vitro susceptibility of pathogenic bacteria to extracts of Rosmarinus officinalis and Caesalpinia spinosa
Keywords:
beta-lactam resistant, Escherichia coli, plant extracts, Pseudomonas aeruginosa, Staphylococcus aureus.Abstract
Introduction: Bacterial resistance to drugs affects the health and economy of thousands of families. An alternative is found in medicinal plants whose properties would allow treating or curing microbial infections.
Objective: To evaluate the in vitro susceptibility of Escherichia coli strains that produce extended-spectrum beta-lactamases (ESBL), Pseudomonas aeruginosa and Staphylococcus aureus to ethanolic extracts of Rosmarinus officinalis L. and Caesalpinia spinosa.
Methods: Quantitative, experimental and prospective research where ethanolic extracts of Rosmarinus officinalis and Caesalpinia spinosa at different concentrations (100, 200, 300, 400 and 500 mg/mL) were tested against 3 strains of Escherichia coli ESBL, Pseudomonas aeruginosa and Staphylococcus aureus. The in vitro antibacterial potential of the extracts was established by the disk diffusion method, and the minimum concentrations to inhibit bacterial growth were also determined.
Results: Rosmarinus officinalis extract at 500 mg/mL inhibited the in vitro growth of Staphylococcus aureus, observing an average inhibitory halo of 22.7 mm in diameter, but did not affect Escherichia coli ESBL and Pseudomonas aeruginosa. Likewise, with a concentration of 500 mg/mL of Caesalpinia spinosa, the multiplication of Escherichia coli ESBL (16.7 mm), Pseudomonas aeruginosa (15.6 mm) and Staphylococcus aureus (31.8 mm) was inhibited.
Conclusion: Staphylococcus aureus strains are susceptible to ethanolic extracts prepared from Rosmarinus officinalis leaves and Caesalpinia spinosa pods. In addition, they inhibit the growth of Escherichia coli ESBL and Pseudomonas aeruginosa strains when exposed to Caesalpinia spinosa extract.
Downloads
References
2. Agung Yogeswara IB, Ayu Wita IG, Nursini NW. Antibacterial activity and cytotoxicity of sequentially extracted medicinal plant Blumea balsamifera Lin. (DC). Biocatal Agric Biotechnol. 2022 [acceso: 15/01/2023]; 43:1849-56. Disponible en: https://www.tandfonline.com/doi/abs/10.1080/14786419.2010.485573
3. Flores-Villa E, Sáenz-Galindo A, Castañeda-Facio AO, Narro-Céspedes RI, Flores-Villa E, Sáenz-Galindo A, et al. Romero (Rosmarinus officinalis L.): su origen, importancia y generalidades de sus metabolitos secundarios. TIP Rev Espec En Cienc Quím-Biológicas 2020 [acceso: 15/01/2023]; 23: 1-17. Disponible en: https://www.scielo.org.mx/scielo.php?script=sci_abstract&pid=S1405888X202000-0100212&lng=es&nrm=iso&tlng=es
4. de Oliveira JR, de Jesus D, Figueira LW, de Oliveira FE, Pacheco C, Camargo SEA, et al. Biological activities of Rosmarinus officinalis L. (rosemary) extract as analyzed in microorganisms and cells. Exp Biol Med. 2017 [acceso: 17/01/2023]; 242(6):625-34. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5685262/
5. Perales LJD, Verde DMJ, Viveros DJE, Barrón MP, Garza DRA, Aguirre VE, et al. Actividad antioxidante, tóxica y antimicrobiana de Rosmarinus officinalis, Ruta graveolens y Juglans regia contra Helicobacter pylori. Biotecnia. 2022 [acceso: 22/01/2023]; 25(1):88-93. Disponible en: https://biotecnia.unison.mx/index.php/biotecnia/article/view/1773
6. Dolghi A, Coricovac D, Dinu S, Pinzaru I, Dehelean CA, Grosu C, et al. Chemical and antimicrobial characterization of Mentha piperita L. and Rosmarinus officinalis L. essential oils and in vitro potential cytotoxic effect in human colorectal carcinoma cells. Molecules. 2022 [acceso: 22/01/2023]; 27(18):1-21. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9505364/
7. Alcívar - Bazurto MC, Vargas-Zambrano PA, Cuenca-Nevárez GJ, Talledo -Solórzano MV. Determinación de propiedades antimicrobianas y termofísicas en un producto cárnico con adición del hidrolato de romero (Rosmarinus officinalis L.) y tomillo (Thymus vulgaris). Pol. Con. 2021[acceso: 22/01/2023]; 6 (3):1493-1512. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=7926949
8. Pacheco KC, Espejo GZ, Saldaña J, Cerdán WB. Efecto del extracto hidroalcohólico de Caesalpinia spinosa (Fabaceae) sobre el crecimiento de Salmonella typhi y Escherichia coli. Arnaldoa. 2019 [acceso: 23/01/2023]; 26(2): 699-712. Disponible en: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S241332992019000200-012&lng=es
9. Robledo SM, Quintero J, Higuita J, Fernández M, Murillo J, Restrepo A, et al. Caesalpinia spinosa (Molina) Kuntze: una nueva promesa para el tratamiento tópico de la leishmaniasis cutánea. Rev Acad Colomb Cienc Exactas Físicas Nat. 2020 [acceso: 23/01/2023]; 44(173):915-36. Disponible en: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S037039082020000400915
10. Avelino-Flores MCG, Bibbins-Martínez MD, Vallejo-Ruiz V, Reyes-Leyva J. Evaluación in vitro de la actividad citotóxica y antitumoral de plantas medicinales recomendadas en Cuetzalan del Progreso, Puebla, México. Polibotánica. 2019 [acceso: 25/01/2023]; 47: 113-35. Disponible en: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S14052768201900010-0113&lng=es
11. Sacsaquispe R, Velasquez J. Manual de procedimientos para la prueba de sensibilidad antimicrobiana por el método de Disco Difusión. Perú: Instituto Nacional de Salud; 2002.
12. Manilal A, Sabu KR, Woldemariam M, Aklilu A, Biresaw G, Yohanes T, et al. Antibacterial Activity of Rosmarinus officinalis against Multidrug-Resistant Clinical Isolates and Meat-Borne Pathogens. Evid Based Complement Alternat Med. 2021 [acceso: 25/01/2023]; 21: 1-10. Disponible en: https://www.hindawi.com/journals/ecam/2021/6677420/
13. Neves JA, Neves JA, Oliveira R de CM. Pharmacological and biotechnological advances with Rosmarinus officinalis L. Expert Opin Ther Pat. 2018 [acceso: 30/01/2023]; 28(5): 399-413. Disponible en: https://pubmed.ncbi.nlm.nih.gov/29633892/
14. Amaral GP, Mizdal CR, Stefanello ST, Mendez ASL, Puntel RL, de Campos MMA, et al. Antibacterial and antioxidant effects of Rosmarinus officinalis L. extract and its fractions. J Tradit Complement Med. 2018 [acceso: 30/01/2023]; 9(4):383-92. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6702153/
15. Ruiz DRF, Enríquez MQ, Pérez OLC. Los antibióticos y su impacto en la sociedad. MediSur. 2021 [acceso: 03/02/2023];19(3):477-91. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S1727897X2021000300477
16. Aldulaimi OA. General overview of phenolics from plant to laboratory, good antibacterials or not. Pharmacogn Rev. 2017 [acceso: 05/02/2023]; 11(22):123-7. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5628517/
17. Miklasinska-Majdanik M, Kepa M, Wojtyczka RD, Idzik D, Wasik TJ. Phenolic Compounds Diminish Antibiotic Resistance of Staphylococcus aureus Clinical Strains. Int J Environ Res Public Health. 2018 [acceso: 05/02/2023]; 15(10):[aprox. 35 pant.]. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6211117/
18. Nieto G, Ros G, Castillo J. Antioxidant and antimicrobial properties of Rosemary (Rosmarinus officinalis, L.): A Review. Medicines. 2018 [acceso: 06/02/2023]; 5(3):98. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30181448/
19. Troncoso C, Pavez M, Santos A, Salazar R, Barrientos L, Troncoso C, et al. Implicancias estructurales y fisiológicas de la célula bacteriana en los mecanismos de resistencia antibiótica. Int J Morphol. 2017 [acceso: 30/01/2023]; 35(4):1214-23. Disponible en: https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S071795022017000401214
20. Castaño HI, Ciro G, Zapata JE, Jiménez SL. Actividad bactericida del extracto etanólico y del aceite esencial de hojas de Rosmarinus officinalis L. sobre algunas bacterias de interés alimentario. Vitae. 2010 [acceso: 30/01/2023]; 17(2):149-54. Disponible en: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-40042010000200006&lng=en
21. Aguilar-Galvez A, Noratto G, Chambi F, Debaste F, Campos D. Potential of tara (Caesalpinia spinosa) gallotannins and hydrolysates as natural antibacterial compounds. Food Chem. 2014 [acceso: 06/02/2023]; 156:301-4. Disponible en: https://pubmed.ncbi.nlm.nih.gov/24629972/
22. He DY, Li YP, Tang HB, Luo L, Ma RJ, Wang JH, et al. Phenolic compounds from the twigs and leaves of Tara (Caesalpinia spinosa). J Asian Nat Prod Res. 2016 [acceso: 06/02/2023]; 18(4):334-8. Disponible en: https://pubmed.ncbi.nlm.nih.gov/26666377/
Published
How to Cite
Issue
Section
License
Authors who have publications with this Journal accept the following terms:
- The authors will retain their copyright and guarantee the Journal the right of first publication of their work, which will simultaneously be subject to the Creative Commons Attribution License. The content presented here can be shared, copied and redistributed in any medium or format; Can be adapted, remixed, transformed or created from the material, using the following terms: Attribution (giving appropriate credit to the work, providing a link to the license, and indicating if changes have been made); non-commercial (you cannot use the material for commercial purposes) and share-alike (if you remix, transform or create new material from this work, you can distribute your contribution as long as you use the same license as the original work).
- The authors may adopt other non-exclusive license agreements for the distribution of the published version of the work (for example: depositing it in an institutional electronic archive or publishing it in a monographic volume) as long as the initial publication in this Journal is indicated.
- Authors are allowed and recommended to disseminate their work through the Internet (e.g., in institutional electronic archives or on their website) before and during the submission process, which can produce interesting exchanges and increase citations. of the published work.