Genetic epidemiology of Plasmid Mediated Class C Beta-Lactamase among Enterobacteriaceae isolates

Authors

Keywords:

beta-Lactamases, cephalosporin resistance, enterobacteriaceae, genetic epidemiology.

Abstract

Introduction: Plasmid-mediated class C ß-lactamase (pAmpC) is a member of broad-spectrum ß-lactamase that spreads worldwide. However, its prevalence was under-evaluated.
Objective: To characterize the prevalence and distribution of pAmpC types in 294 cefoxitin (FOX) and third-generation cephalosporin (3GC) resistant Enterobacteriaceae collected in several regions of Thailand and Vietnam in 2018 and 2020.
Methods: Multiplex Polymerase Chain Reaction (PCR) for pAmpC identification was utilized to investigate prevalence and diversification of pAmpC among 294 cefoxitin and third-generation cephalosporin resistant Enterobacteriaceae isolated from Thailand (n= 197) and Vietnam (n= 97).
Results: The prevalence of pAmpC was 37.1 % found in second and third-generation cephalosporin resistant Enterobacteriaceae. CMY-2 like was prominent in Thailand and Vietnam; however, prevalence of CMY-2 was varied in each hospital. DHA contributed 25.7 %, ACT/MIR rate was dominant in Chiang Rai hospital, reached 100 % in Thanh Hoa Pediatrics hospital. Worrisome, 3.7 % - isolates carried two types of pAmpC. The incidence of pAmpC in Vietnam was significantly higher than those in Thailand.
Conclusions: These findings provide evidence-based of highly spreading and diversified distribution of transferable AmpC among Enterobacteriaceae in two Asia-Pacific countries.

Downloads

Download data is not yet available.

Author Biographies

Chuong Van Le, University of Medicine and Pharmacy at Ho Chi Minh City. Ho Chi Minh City, Vietnam

Quality Control Center for Medical Laboratory

Nguyen Nhat Tran, University of Medicine and Pharmacy at Ho Chi Minh City. Ho Chi Minh City, Vietnam

Quality Control Center for Medical Laboratory

Phuong Thi Be Nguyen, University of Medicine and Pharmacy at Ho Chi Minh City. Ho Chi Minh City, Vietnam

Quality Control Center for Medical Laboratory

References

1. Meini S, Tascini C, Cei M, Sozio E, Rossolini GM. AmpC ß-lactamase-producing Enterobacterales: what a clinician should know [Internet]. Infection. 2019;47(3):363-75. DOI:10.1007/s15010-019-01291-9

2. Jacoby GA. AmpC beta-lactamases [Internet]. Clinical microbiology reviews. 2009;22(1):161-82. DOI:10.1128/CMR.00036-08

3. Tamma PD, Doi Y, Bonomo RA, Johnson JK, Simner PJ. A Primer on AmpC ß-Lactamases: Necessary Knowledge for an Increasingly Multidrug-resistant World [Internet]. Clinical infectious diseases. 2019;69(8):1446-55. DOI:10.1093/cid/ciz173

4. Ibrahim ME, Abbas M, Al-Shahrai AM, Elamin BK. Phenotypic Characterization and Antibiotic Resistance Patterns of Extended-Spectrum ß-Lactamase- and AmpC ß-Lactamase-Producing Gram-Negative Bacteria in a Referral Hospital, Saudi Arabia [Internet]. The Canadian journal of infectious diseases & medical microbiology. 2019;2019:6054694. DOI:10.1155/2019/6054694

5. Shahid M, Sobia F, Singh A, Khan HM, Hawkey PM, Huq A, et al. AmpC ß-lactamases and bacterial resistance: an updated mini review [Internet]. Rev Med Microbiol. 2009;20(3):41-55. DOI:10.1097/MRM.0b013e328331ad83

6. Zhou Q, Tang M, Zhang X, Lu J, Tang X, Gao Y. Detection of AmpC ß-lactamases in gram-negative bacteria [Internet]. Heliyon. 2022;8(12):e12245. DOI:10.1016/j.heliyon.2022.e12245

7. Philippon A, Arlet G, Labia R, Iorga BI. Class C ß-Lactamases: Molecular Characteristics [Internet]. Clinical microbiology reviews. 2022;35(3):e0015021. DOI:10.1128/cmr.00150-21

8. Tenover FC, Emery SL, Spiegel CA, Bradford PA, Eells S, Endimiani A, et al. Identification of plasmid-mediated AmpC beta-lactamases in Escherichia coli, Klebsiella spp., and Proteus species can potentially improve reporting of cephalosporin susceptibility testing results [Internet]. Journal of clinical microbiology. 2009;47(2):294-9. DOI:10.1128/JCM.01797-08

9. Ingram PR, Inglis TJ, Vanzetti TR, Henderson BA, Harnett GB, Murray RJ. Comparison of methods for AmpC beta-lactamase detection in Enterobacteriaceae [Internet]. Journal of medical microbiology. 2011;60(Pt 6):715-21. DOI:10.1099/jmm.0.029140-0

10. Sakanashi D, Miyazaki N, Kawamoto Y, Ohno T, Yamada A, Koita I, et al. A novel disk-based detection method with superior sensitivity for ß-lactamase production in third-generation cephalosporin-resistant Enterobacteriaceae [Internet]. Journal of infection and chemotherapy. 2019;25(5):330-6. DOI:10.1016/j.jiac.2018.12.008

11. Wagner K, Mancini S, Ritter C, Böttger EC, Keller PM. Evaluation of the AID AmpC line probe assay for molecular detection of AmpC-producing Enterobacterales [Internet]. Journal of global antimicrobial resistance. 2019;19:8-13. DOI:10.1016/j.jgar.2019.04.015

12. CLSI. Ferformance standards for antimicrobial susceptibility testing [Internet]. 30th ed. Wayne, PA: Clinical and Laboratory Standards Institute; 2020. [access: 15/09/2023]. Available at: https://www.nih.org.pk/wp-content/uploads/2021/02/CLSI-2020.pdf

13. Chuong LV, Prachayasittikul V, Isarankura Na Ayudhya C, Lawung R. Multiplex PCR scheme for variant plasmid mediated class C beta-lactamase typing [Internet]. Journal of clinical laboratory analysis. 2018 Mar;32(3). DOI:10.1002/jcla.22298

14. Harris PN, Ferguson JK. Antibiotic therapy for inducible AmpC beta-lactamase-producing Gram-negative bacilli: what are the alternatives to carbapenems, quinolones and aminoglycosides? [Internet]. International journal of antimicrobial agents. 2012;40(4):297-305. DOI:10.1016/j.ijantimicag.2012.06.004

15. Perera P, Gamage S, De Silva HSM, Jayatilleke SK, de Silva N, Aydin A, et al. Phenotypic and genotypic distribution of ESBL, AmpC ß-lactamase and carbapenemase-producing Enterobacteriaceae in community-acquired and hospital-acquired urinary tract infections in Sri Lanka [Internet]. Journal of global antimicrobial resistance. 2022;30:115-22. DOI:10.1016/j.jgar.2022.05.024

16. Gajamer VR, Bhattacharjee A, Paul D, Ingti B, Sarkar A, Kapil J, et al. High prevalence of carbapenemase, AmpC ß-lactamase and aminoglycoside resistance genes in extended-spectrum ß-lactamase-positive uropathogens from Northern India [Internet]. Journal of global antimicrobial resistance. 2020;20:197-203. DOI:10.1016/j.jgar.2019.07.029

17. Rizi KS, Mosavat A, Youssefi M, Jamehdar SA, Ghazvini K, Safdari H, et al. High prevalence of bla(CMY) AmpC beta-lactamase in ESBL co-producing Escherichia coli and Klebsiella spp. clinical isolates in the northeast of Iran [Internet]. Journal of global antimicrobial resistance. 2020;22:477-82. DOI:10.1016/j.jgar.2020.03.011

18. Donà V, Scheidegger M, Pires J, Furrer H, Atkinson A, Babouee Flury B. Gradual in vitro Evolution of Cefepime Resistance in an ST131 Escherichia coli Strain Expressing a Plasmid-Encoded CMY-2 ß-Lactamase [Internet]. Frontiers in microbiology. 2019;10:1311. DOI:10.3389/fmicb.2019.01311

Downloads

Published

2024-05-17

How to Cite

1.
Le CV, Tran NN, Nguyen PTB, Le NT, Le DT. Genetic epidemiology of Plasmid Mediated Class C Beta-Lactamase among Enterobacteriaceae isolates. Rev Cubana Med Milit [Internet]. 2024 May 17 [cited 2025 Apr. 2];53(2):e024038119. Available from: https://revmedmilitar.sld.cu/index.php/mil/article/view/38119

Issue

Section

Research Article