Antibacterial effect of the hydroalcoholic extract of Tillandsia maculata (Bromeliaceae) on Streptococcus mutans

Authors

Keywords:

anti-bacterial agents, dental caries, chlorhexidine, Tillandsia, Streptococcus mutans.

Abstract

Introduction: Tillandsia maculata Ruíz & Pav. It has secondary metabolites that can affect the development of Streptococcus mutans, the main agent that causes dental caries.
Objectives: To evaluate the antibacterial effect of the hydroalcoholic extract of Tillandsia maculata Ruíz & Pav. on Streptococcus mutans.
Methods: Experimental, in vitro and comparative work. An initial phytochemical screening of the extract was carried out. 56 Müller-Hinton agar plates (Merck®) were used, divided into 7 groups (n= 8): group I (deionized water), group II (70% ethanol), group III (0.12% chlorhexidine), group IV (Tillandsia maculata at 25%), group V (Tillandsia maculata at 50%), group VI (Tillandsia maculata at 75%) and group VII (Tillandsia maculata at 100%). The disk diffusion method detailed by Bauer and Kirby was used; The bacteria used was Streptococcus mutans ATCC 25175 and the evaluations of the inhibition diameters were made after 24 hours, to indicate antibacterial impact.
Results: Phytochemical screening revealed tannins, flavonoids, cardiotonic glycosides and lactones. The antibacterial effect of group VII (Tillandsia maculata at 100 %) was verified with 19.691 ± 0.0679 mm (99.06%), comparable with chlorhexidine at 0.12% (group III) 19.878 ± 0.0451 mm (100%) on Streptococcus mutans.
Conclusions: The hydroalcoholic extract of Tillandsia maculata Ruíz & Pav. 100% exhibits in vitro antibacterial effect on Streptococcus mutans ATCC 25175 with measurements similar to 0.12% chlorhexidine.

Downloads

Download data is not yet available.

Author Biographies

Héctor Alexander Vílchez-Cáceda, Universidad Inca Garcilaso de la Vega

Laboratorio de Microbiología

Ketty Rojas-Berastein, Universidad Inca Garcilaso de la Vega

Laboratorio de Microbiología

Carolina Mayo Takahashi-Ferrer, Universidad Norbert Wiener

Laboratorio de Fitoquímica

Christhian Alexander Alvia-Saldarriaga, Universidad Norbert Wiener

Laboratorio de Fitoquímica

References

1. Lamont R, Koo H, Hajishengallis G. The oral microbiota: dynamic communities and host interactions [Internet]. Nat Rev Microbiol; 2018 [acceso: 13/03/2024];16: 745-59. Disponible en: https://www.nature.com/articles/s41579-018-0089-x#citeas

2. Cui T, Luo W, Xu L, Yang B, Zhao W, Cang H. Progress of Antimicrobial Discovery Against the Major Cariogenic Pathogen Streptococcus mutans [Internet]. Curr Issues Mol Biol. 2019 [acceso: 13/03/2024];32(1):601-44. Disponible en: https://pubmed.ncbi.nlm.nih.gov/31166181/

3. Kovacs CJ, Faustoferri RC, Bischer AP, Quivey RG. Streptococcus mutans requires mature rhamnose-glucose polysaccharides for proper pathophysiology, morphogenesis and cellular division [Internet]. Mol. Microbiol. 2019 [acceso: 13/03/2024];112(3):944-59. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6736739/

4. Martignon S, Roncalli A, Alvarez E, Aranguiz V, Feldens C, Buzalaf M. Risk factors for dental caries in Latin American and Caribbean countries [Internet]. Braz. Oral Res. 2021 [acceso: 13/03/2024];35(suppl 01):19-42. Disponible en: https://www.scielo.br/j/bor/a/4yFxjpCdTNL4yzZsKrT4KWg/abstract/?lang=en

5. Organización Mundial de la Salud. OMS: Salud bucodental [Internet]. Ginebra: OMS; 2022 [acceso: 13/03/2024]. Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/oral-health

6. World Dental Federation. Visión 2020 de la FDI [Internet]. Ginebra: FDI; 2020. [acceso: 13/03/2024]. Disponible en: https://www.fdiworlddental.org/sites/default/files/2020-11/vision_2020_spanish.pdf

7. Ministerio de Salud. El 90, 4 % de los peruanos tiene caries [Internet]. Perú: MINSA; 2019. [acceso: 13/03/2024], [aprox. 3 pant.]. Disponible en: https://www.gob.pe/institucion/minsa/noticias/45475-el-90-4-de-los-peruanos-tiene-caries-dental

8. Vílchez-Cáceda H, Olortegui-Quispe A, Alvia-Saldarriaga C. Efecto antibacteriano del extracto hidroalcohólico de Solanum sessiliflorum Dunal (cocona) sobre Streptococcus mutans[Internet]. Rev Cub Med Mil. 2023 [acceso: 13/03/2024];52(1):e02302340. Disponible en: https://revmedmilitar.sld.cu/index.php/mil/article/view/2340

9. Vílchez-Cáceda H, Rojas-Berastein K, Olortegui-Quispe A, Alvia-Saldarriaga C. Efecto antibacteriano de dos extractos hidroalcohólicos de plantas medicinales sobre Streptococcus mutans[Internet]. Rev Cub Med Mil. 2023 [acceso: 13/03/2024];52(3):e02302852. Disponible en: https://revmedmilitar.sld.cu/index.php/mil/article/view/2852

10. Vílchez-Cáceda H, Cervantes-Ganoza L. Evaluación del efecto antibacteriano sinérgico de rifamicina en propóleo sobre bacterias grampositivas [Internet]. Rev Cub Med Mil. 2021 [acceso: 13/03/2024];50(3):e02101336. Disponible en: http://www.revmedmilitar.sld.cu/index.php/mil/article/view/1336

11. Rose MA, Garcez T, Savic S, Garvey LH. Chlorhexidine allergy in the perioperative setting: a narrative review [Internet]. Br. J. Anaesth. 2019 [acceso: 13/03/2024];123(1):95-103. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30955832/

12. Tartaglia G, Tadakamadla S, Conelly S, Sforza C, Martin C. Advers events associated with home use of mouthrinses: a systematic review [Internet]. Therapeutic advances in drug safety. 2019 [acceso: 13/03/2024];10(1):1-16. Disponible en: https://journals.sagepub.com/doi/pdf/10.1177/2042098619854881

13. Espejo-Serna A, López-Ferrari AR. La familia Bromeliaceae en México [Internet]. Bot. Sci. 2018 [acceso: 13/03/2024];96(3):533-54. Disponible en: https://www.botanicalsciences.com.mx/index.php/botanicalSciences/article/view/1918

14. Suárez JAG, Calumby RJN, Oliveira FT de, Vieira DS, Oliveira JO de, Moreira RT de F, et al. Biological activities of plants of the Bromeliaceae family and the species Encholirium spectabile Mart. ex Schult. & Schult. F [Internet]. RSD. 2020 [acceso: 13/03/2024];9(12): e33091211019. Disponible en: https://rsdjournal.org/index.php/rsd/article/view/11019

15. Estrella-Parra E, Flores-Cruz M, Blancas-Flores G, Koch SD, Alarcón-Aguilar FJ. El género Tillandsia: historia, usos, química y actividad biológica [Internet]. BLACPMA. 2019 [acceso: 13/03/2024];18(3):239-64. Disponible en: https://www.blacpma.ms-editions.cl/index.php/blacpma/article/view/87

16. Rossado A. Revisión taxonómica del género Tillandsia L. (Bromeliaceae) para Uruguay [Internet]. [Tesis de posgrado] Montevideo: Universidad de la República, Facultad de Ciencias - PEDECIBA; 2018. [acceso: 13/03/2024]. Disponible en: https://www.colibri.udelar.edu.uy/jspui/bitstream/20.500.12008/24534/1/uy24-18915.pdf

17. Sheu Y, Cunha-Machado AS, Gontijo ABPL, Favoreto FC, Soares TBC, Miranda FD. Genetic diversity of Bromeliaceae species from the Atlantic Forest [Internet]. Genet Mol Res. 2017 [acceso: 13/03/2024];16(2): gmr16029636. Disponible en: https://pubmed.ncbi.nlm.nih.gov/28437558/

18. Pontes MC, Cavalcante NB, Leal AEBP, Oliveira AP, Coutinho HDM, Menezes IRA, et al. Chemical constituents and antibacterial activity of Bromelia laciniosa (Bromeliaceae): Identification and structural characterization [Internet]. Phytomedicine Plus. 2022 [acceso: 13/03/2024];2(1):100215. Disponible en: https://www.sciencedirect.com/science/article/pii/S266703132200001X?via%3Dihub

19. De Oliveira RS, de Oliveira Souza S, Aona LYS, Souza FVD, Rossi ML, de Souza EH. Leaf structure of Tillandsia species (Tillandsioideae: Bromeliaceae) by light microscopy and scanning electron microscopy [Internet]. Microsc Res Tech. 2022 [acceso: 13/03/2024];85(1):253-69. Disponible en: https://pubmed.ncbi.nlm.nih.gov/34369639/

20. Belmonte E, Arriaza B, Arismendi M, Sepúlveda G. Foliar Anatomy of Three Native Species of Tillandsia L. from the Atacama Desert, Chile [Internet]. Plants (Basel). 2022 [acceso: 13/03/2024];11(7):870. Disponible en: https://pubmed.ncbi.nlm.nih.gov/35406850/

21. Gonzalez A, Benfodda Z, Bénimélis D, Fontaine JX, Molinié R, Meffre P. Extraction and Identification of Volatile Organic Compounds in Scentless Flowers of 14 Tillandsia Species Using HS-SPME/GC-MS [Internet]. Metabolites. 2022 [acceso: 13/03/2024];12(7):628. Disponible en: https://pubmed.ncbi.nlm.nih.gov/35888753/

22. Lo MM, Benfodda Z, Dunyach-Rémy C, Bénimélis D, Roulard R, Fontaine JX, et al. Isolation and Identification of Flavones Responsible for the Antibacterial Activities of Tillandsia bergeri Extracts [Internet]. ACS Omega. 2022 [acceso: 13/03/2024];7(40): 35851-62. Disponible en: https://pubmed.ncbi.nlm.nih.gov/36249367/

23. Chichipe G, Sánchez R. Determinación de quercetina por HPLC / UV visible y actividad antimicrobiana del extracto hidrometanólico de las hojas de Tillandsia maculata R & P. "Huicundo" [Internet]. [Tesis de pregrado]. Lima: Universidad Inca Garcilaso de la Vega, Facultad de Ciencias Farmacéuticas y Bioquímica; 2021. [acceso: 13/03/2024]. Disponible en: http://repositorio.uigv.edu.pe/handle/20.500.11818/5998

24. Castello LV, Galetto L. How many taxa can be recognized within the complex Tillandsia capillaris (Bromeliaceae, Tillandsioideae)? Analysis of the available classifications using a multivariate approach [Internet]. PhytoKeys. 2013 [acceso: 13/03/2024];20(23):25-39. Disponible en: https://phytokeys.pensoft.net/article/1544/element/4/430//

25. Royal Botanic Gardens Kew. Tillandsia maculata Ruiz & Pav. Reino Unido: Plants of the World Online; 2023. [acceso: 13/03/2024]. Disponible en: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:125362-1

26. Vílchez H, Inocente M, Flores O. Actividad cicatrizante de seis extractos hidroalcohólicos de plantas en heridas incisas de Rattus norvegicus albinus [Internet]. Rev Cub Med Mil. 2020 [acceso: 13/03/2024;49(1):86-100. Disponible en: http://www.revmedmilitar.sld.cu/index.php/mil/article/view/489/448

27. Vílchez-Cáceda H, Olortegui-Quispe A, Chu-Estrada W, Alvia-Saldarriaga C. Optimización de un medio de cultivo para Escherichia coli a base de miel de abeja [Internet]. Rev Cub Med Mil. 2023 [acceso: 13/03/2024];50(3):e02302821. Disponible en: https://revmedmilitar.sld.cu/index.php/mil/article/view/2821/2060

28. Akanmu A, Sodipo O, Sandabe U, Shamaki B, Balogun S, Akinwunmi K. Proximate and elemental analyses, phytochemical screening and antioxidant activities of aqueous and ethanol extracts of Solanum incanum Linn [Internet]. Fruits. Bull. Pharm. Sci. 2021 [acceso: 13/03/2024];44(1):49-62. Disponible en: https://bpsa.journals.ekb.eg/article_174130.html

29. Milutinovic VM, Matic IZ, Stanojkovic TP, Sokovic MD, Ciric AD, Ušjak LJ, et al. Antimicrobial and Cytotoxic Activities of Selected Hieracium L . s. str. (Asteraceae) Extracts and Isolated Sesquiterpene Lactones [Internet]. Chem Biodivers. 2022 [acceso: 13/03/2024];19(7): e202200326. Disponible en: https://pubmed.ncbi.nlm.nih.gov/35621325/

Published

2024-05-17

How to Cite

1.
Vílchez-Cáceda HA, Rojas-Berastein K, Takahashi-Ferrer CM, Alvia-Saldarriaga CA. Antibacterial effect of the hydroalcoholic extract of Tillandsia maculata (Bromeliaceae) on Streptococcus mutans. Rev Cubana Med Milit [Internet]. 2024 May 17 [cited 2025 Jun. 12];53(2):e024038860. Available from: https://revmedmilitar.sld.cu/index.php/mil/article/view/38860

Issue

Section

Research Article