Antibacterial effect of nine hydroalcoholic extracts of ethnomedicinal plants from Huayucachi-Peru on gram-positive bacteria
Keywords:
flavonoids, gram-positive bacteria, medicinal plants, phenolic compounds.Abstract
Introduction: Ethnomedicinal plants from the district of Huayucachi-Peru exhibit chemical components with the ability to inhibit gram-positive bacteria.Objectives: To evaluate the antibacterial effect of 9 hydroalcoholic extracts of ethnomedicinal plants from Huayucachi-Peru on Staphylococcus aureus, Streptococcus pneumoniae and Streptococcus pyogenes.
Methods: Experimental, in vitro and comparative study. Initial phytochemical screening of the extracts was performed. Ninety-nine Müller-Hinton agar plates (Merck®) were used, divided into 11 groups (n= 9): Group I (70 % ethanol), group II (ciprofloxacin 10 ug), group III to XI extracts of lemon verbena, borage, rabbit ear, red nettle, pimpernel, eucalyptus, lemon balm, tumbo serrano and asmachilca at 25 %, respectively. The Kirby-Bauer disk diffusion method was used; the strains used were S. aureus ATCC 25923, S. pneumoniae ATCC 49619 and S. pyogenes ATCC 19615 and the inhibition halos were measured at 24 hours.
Results: Phenolic and flavonoid compounds were detected in the phytochemical screening. Inhibition ranges of 12.725 ±0.0411 to 17.617 ±0.0405 mm were obtained for S. aureus; 13.017 ±0.0366 to 18.133 ±0.0432 for S. pneumoniae and 12.992 ±0.0336 to 17.550 ±0.0417 for S. pyogenes. Rabbit ear, red nettle and tumbo serrano extracts showed the highest antibacterial activity, against S. aureus, S. pneumoniae and S. pyogenes, respectively.
Conclusions: The 9 hydroalcoholic extracts of ethnomedicinal plants demonstrate to have an effect on the bacteria under study and constitute a promising source of antibacterial chemical compounds.
Downloads
References
2. Vílchez-Cáceda H, Rojas-Berastein K, Olortegui-Quispe A, Alvia-Saldarriaga C. Efecto antibacteriano de dos extractos hidroalcohólicos de plantas medicinales sobre Streptococcus mutans[Internet]. Rev Cub Med Mil. 2023 [acceso: 10/05/2024]; 52(3):e02302852. Disponible en: https://revmedmilitar.sld.cu/index.php/mil/article/view/2852
3. Army M, Khodijah R, Haryani Y, Teruna H, Hendra R. Antibacterial in vitro screening of Helminthostachys zeylanica (L.) Hook. root extracts [Internet]. J Pharm Pharmacogn Res. 2023 [acceso: 10/05/2024]; 11(2):291-6. Disponible en: https://jppres.com/jppres/antibacterial-of-helminthostachys-zeylanica-root/#:~:text=Conclusions%3A%20The%20study%20demonstrated%20the,for%20dev-eloping%20new%20antimicrobial%20agents
4. Guglielmi P, Pontecorvi V, Rotondi G. Natural compounds and extracts as novel antimicrobial agents [Internet]. Expert Opinion on Therapeutic Patents. 2020 [acceso: 10/05/2024]; 30(12):949-62. Disponible en: https://pubmed.ncbi.nlm.nih.gov/33203288/
5. Mostafa A, Al-Askar A, Almaary S, Dawoud M, Sholkamy N, Bakri M. Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases [Internet]. Saudi journal of biological sciences. 2018 [acceso: 10/05/2024]; 25(2):361-6. Disponible en: https://www.sciencedirect.com/science/article/pii/S1319562X17300773
6. Alibi S, Crespo D, Navas J. Plant-derivatives small molecules with antibacterial activity [Internet]. Antibiotics. 2021 [acceso: 10/05/2024]; 10(3):231. Disponible en: https://pubmed.ncbi.nlm.nih.gov/33668943/
7. Pulingam T, Parumasivam T, Gazzali M, Sulaiman M, Chee Y, Lakshmanan M, et al. Antimicrobial resistance: Prevalence, economic burden, mechanisms of resistance and strategies to overcome [Internet]. European Journal of Pharmaceutical Sciences. 2022 [acceso: 10/05/2024]; 170:106103. Disponible en: https://www.sciencedirect.com/science/article/pii/S0928098721004048
8. Vílchez-Cáceda H, Cervantes-Ganoza L. Evaluación del efecto antibacteriano sinérgico de rifamicina en propóleo sobre bacterias grampositivas [Internet]. Rev Cub Med Mil. 2021 [acceso: 10/05/2024]; 50(3):e02101336. Disponible en: http://www.revmedmilitar.sld.cu/index.php/mil/article/view/1336
9. Vílchez H, Inocente M, Flores O. Actividad cicatrizante de seis extractos hidroalcohólicos de plantas en heridas incisas de Rattus norvegicus albinus [Internet]. Rev Cub Med Mil. 2020 [acceso: 10/05/2024]; 49(1):86-100. Disponible en: http://www.revmedmilitar.sld.cu/index.php/mil/article/view/489/448
10. Taype E. Diseño de explotación de cantera para agregados, distrito de Huayucachi [Internet]. [Tesis de pregrado]. Huancayo: Universidad del Centro del Perú, Facultad de Ingenieria Civil; 2016. [acceso: 10/05/2024]. Disponible en: https://repositorio.uncp.edu.pe/handle/20.500.12894/4107
11. Ccora M. La relación del ecoturismo y desarrollo sostenible en el distrito de Huayucachi provincia de Huancayo departamento de Junín, período 2020 [Internet]. [Tesis de maestria]. Huancavelica: Universidad Nacional de Huancavelica. Facultad de Ciencias de la Educación; 2021. [acceso: 10/05/2024]. Disponible en: https://repositorio.unh.edu.pe/items/adafe159-0f32-427c-a9a7-f108e75b7dda
12. Ganoza F. Asmachilca: Vernacular name of Eupatorium triplinerve Vahl, Aristeguietia discolor RM King & H. Rob., Aristeguietia gayana Wedd, Baccharis sp. (Asteraceae), Peru [Internet]. Ethnobotany Research and Applications. 2020 [acceso: 10/05/2024]; 19:1-19. Disponible en: https://ethnobotanyjournal.org/index.php/era/article/view/1825
13. Calderon A, Salas J, Dapello G, Gamboa E, Rosas J, Chávez J, et al. Assessment of Antibacterial and Antifungal Properties and In Vivo Cytotoxicity of Peruvian Passiflora Mollisima[Internet]. The Journal of Contemporary Dental Practice. 2019 [acceso: 10/05/2024]; 20(2):145-51. Disponible en: https://www.thejcdp.com/abstractArticleContentBrowse/JCDP/19/20/2/15286/abs-tractArticle/Article
14. Culqui H, Zumaeta C, Quintana S, Silva E. Evaluación de la capacidad antioxidante y actividad antibacteriana del extracto acuoso y etanólico de Cymbopogon citratus[Internet]. Revista Científica UNTRM: Ciencias Naturales e Ingeniería. 2020 [acceso: 10/05/2024]; 3(2):9-15. Disponible en: https://revistas.untrm.edu.pe/index.php/CNI/article/view/608
15. Laux C, Peschel A, Krismer B. Staphylococcus aureus colonization of the human nose and interaction with other microbiome members [Internet]. Microbiology Spectrum. 2019 [acceso: 10/05/2024]; 7(2):7-2. Disponible en: https://pubmed.ncbi.nlm.nih.gov/31004422/
16. Feldman C, Anderson R. Recent advances in the epidemiology and prevention of Streptococcus pneumoniae infections [Internet]. F1000Research. 2020; 9(F1000 Faculty Rev):338. DOI: 10.12688/f1000research.22341.1
17. Jespersen G, Lacey A, Tong Y, Davies R. Global genomic epidemiology of Streptococcus pyogenes[Internet]. Infection, Genetics and Evolution. 2020 [acceso: 10/05/2024]; 86:104609. Disponible en: https://pubmed.ncbi.nlm.nih.gov/33147506/
18. Surco-Laos F, García J, Bendezú M, Laos-Anchante D, Panay-Centeno J, Valle-Campos M, Alvarado A. In vitro antioxidant properties and antimicrobial activity of the ethanolic extract of Senecio nutans Sch. Beep. (Asteraceae) [Internet]. J Pharm Pharmacogn Res. 2022 [acceso: 10/05/2024]; 10(6):1026-36. Disponible en: https://jppres.com/jppres/antioxidant-and-antimicrobial-activity-of-senecio-nutans/
19. Cane H, Musman M, Yahya M, Saidi N, Darusman D, Nanda M, et al. Phytochemical screening and antibacterial activity of ethnomedicinal plants from Gayo Lues Highland, Indonesia [Internet]. J Pharm Pharmacogn Res. 2023 [acceso: 10/05/2024]; 11(1):117-28. Disponible en: https://jppres.com/jppres/antibacterial-plants-from-gayo-lues-highland/
20. Ramirez J, Velasquez-Arevalo S, Rodriguez C, Villarreal-La Torre V. Culcitium canescens Humb. & Bonpl. (Asteraceae): an ethnobotanical, ethnopharmacological and phytochemical review [Internet]. Ethnobotany Research and Applications. 2020 [acceso: 10/05/2024]; 19:1-14. Disponible en: https://ethnobotanyjournal.org//index.php/era/article/view/1815
21. Espinoza A. Actividad antioxidante y antibacteriana in vitro del extracto seco hidroalcohólico al 70 % de Caiophora cirsiifolia c. Presl "Ccori Kisa" sobre cepas ATCC y cepas aisladas de Staphylococcus aureus [Internet]. [Tesis de pregrado]. Cusco: Universidad Nacional de San Antonio Abad del Cusco, Facultad de Ciencias de la Salud; 2018. [acceso: 10/05/2024]. Disponible en: https://alicia.concytec.gob.pe/vufind/Record/RUNS_ca9556bedca4997218dcdd7abf3-3d2f4/Details
22. Shala Y, Gururani A. Phytochemical properties and diverse beneficial roles of Eucalyptus globulus labill.: a review [Internet]. Horticulturae. 2021; 7(11):450. DOI: 10.3390/horticulturae7110450
23. Sharifi-Rad J, Quispe C, Herrera-Bravo J, Akram M, Abbaass W, Semwal P, et al. Phytochemical constituents, biological activities, and health-promoting effects of the Melissa officinalis [Internet]. Oxidative Medicine and Cellular Longevity. 2021 [acceso: 10/05/2024]; 2021:1-20. Disponible en: https://www.hindawi.com/journals/omcl/2021/6584693/
24. Vílchez H, Olortegui A, Alvia C. Efecto antibacteriano del extracto hidroalcohólico de Solanum sessiliflorum Dunal (cocona) sobre Streptococcus mutans [Internet] . Rev Cub Med Mil. 2023 [acceso: 10/05/2024]; 52(1):02302340. Disponible en: https://revmedmilitar.sld.cu/index.php/mil/article/view/2340
25. Gorlenko L, Kiselev Y, Budanova V, Zamyatnin Jr A, Ikryannikova N. Plant secondary metabolites in the battle of drugs and drug-resistant bacteria: new heroes or worse clones of antibiotics? [Internet]. Antibiotics. 2023 [acceso: 10/05/2024]; 9(4):170. Disponible en: https://pubmed.ncbi.nlm.nih.gov/32290036/
26. Ibrahim M, Alshammaa S. Pharmacological aspects of Borago officinalis (Borage): A review article [Internet]. Iraqi Journal of Pharmaceutical Sciences. 2023 [acceso: 10/05/2024]; 32(1):1-13. Disponible en: https://bijps.uobaghdad.edu.iq/index.php/bijps/article/view/1611
27. Tocai A, Kokeric T, Tripon S, Barbu-Tudoran L, Barjaktarevic A, Cupara S, et al. Sanguisorba minor Scop.: An Overview of Its Phytochemistry and Biological Effects [Internet]. Plants. 2023; 12(11):2128. DOI: 10.3390/plants12112128
28. Villena-Tejada M, Vera-Ferchau I, Cardona-Rivero A, Zamalloa-Cornejo R, Quispe-Florez M, Frisancho-Triveño Z, et al. Use of medicinal plants for COVID-19 prevention and respiratory symptom treatment during the pandemic in Cusco, Peru: A cross-sectional survey [Internet]. PLoS ONE. 2021 [acceso: 10/05/2024]; 16(9):e0257165. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0257165
Published
How to Cite
Issue
Section
License
Authors who have publications with this Journal accept the following terms:
- The authors will retain their copyright and guarantee the Journal the right of first publication of their work, which will simultaneously be subject to the Creative Commons Attribution License. The content presented here can be shared, copied and redistributed in any medium or format; Can be adapted, remixed, transformed or created from the material, using the following terms: Attribution (giving appropriate credit to the work, providing a link to the license, and indicating if changes have been made); non-commercial (you cannot use the material for commercial purposes) and share-alike (if you remix, transform or create new material from this work, you can distribute your contribution as long as you use the same license as the original work).
- The authors may adopt other non-exclusive license agreements for the distribution of the published version of the work (for example: depositing it in an institutional electronic archive or publishing it in a monographic volume) as long as the initial publication in this Journal is indicated.
- Authors are allowed and recommended to disseminate their work through the Internet (e.g., in institutional electronic archives or on their website) before and during the submission process, which can produce interesting exchanges and increase citations. of the published work.