Antibacterial effect of nine hydroalcoholic extracts of ethnomedicinal plants from Huayucachi-Peru on gram-positive bacteria

Authors

Keywords:

flavonoids, gram-positive bacteria, medicinal plants, phenolic compounds.

Abstract

Introduction: Ethnomedicinal plants from the district of Huayucachi-Peru exhibit chemical components with the ability to inhibit gram-positive bacteria.
Objectives: To evaluate the antibacterial effect of 9 hydroalcoholic extracts of ethnomedicinal plants from Huayucachi-Peru on Staphylococcus aureus, Streptococcus pneumoniae and Streptococcus pyogenes.
Methods: Experimental, in vitro and comparative study. Initial phytochemical screening of the extracts was performed. Ninety-nine Müller-Hinton agar plates (Merck®) were used, divided into 11 groups (n= 9): Group I (70 % ethanol), group II (ciprofloxacin 10 ug), group III to XI extracts of lemon verbena, borage, rabbit ear, red nettle, pimpernel, eucalyptus, lemon balm, tumbo serrano and asmachilca at 25 %, respectively. The Kirby-Bauer disk diffusion method was used; the strains used were S. aureus ATCC 25923, S. pneumoniae ATCC 49619 and S. pyogenes ATCC 19615 and the inhibition halos were measured at 24 hours.
Results: Phenolic and flavonoid compounds were detected in the phytochemical screening. Inhibition ranges of 12.725 ±0.0411 to 17.617 ±0.0405 mm were obtained for S. aureus; 13.017 ±0.0366 to 18.133 ±0.0432 for S. pneumoniae and 12.992 ±0.0336 to 17.550 ±0.0417 for S. pyogenes. Rabbit ear, red nettle and tumbo serrano extracts showed the highest antibacterial activity, against S. aureus, S. pneumoniae and S. pyogenes, respectively.
Conclusions: The 9 hydroalcoholic extracts of ethnomedicinal plants demonstrate to have an effect on the bacteria under study and constitute a promising source of antibacterial chemical compounds.

Downloads

Download data is not yet available.

Author Biographies

Héctor Alexander Vilchez-Cáceda, Universidad Inca Garcilaso de la Vega

Laboratorio de Microbiología

Ketty Rojas-Berastein, Universidad Inca Garcilaso de la Vega

Laboratorio de Microbiología

Christhian Alexander Alvia-Saldarriaga, Universidad Norbert Wiener

Laboratorio de Fitoquímica

Carolina Mayo Takahashi-Ferrer, Universidad Norbert Wiener

Laboratorio de Fitoquímica

References

1. Tello-Ceron G, Pimentel M, Galarza V. Use of medicinal plants from the District of Quero, Jauja, Junín Region, Peru [Internet]. Ecología Aplicada. 2019 [acceso: 10/05/2024]; 18(1):11-20. Disponible en: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1726-22162019000100002

2. Vílchez-Cáceda H, Rojas-Berastein K, Olortegui-Quispe A, Alvia-Saldarriaga C. Efecto antibacteriano de dos extractos hidroalcohólicos de plantas medicinales sobre Streptococcus mutans[Internet]. Rev Cub Med Mil. 2023 [acceso: 10/05/2024]; 52(3):e02302852. Disponible en: https://revmedmilitar.sld.cu/index.php/mil/article/view/2852

3. Army M, Khodijah R, Haryani Y, Teruna H, Hendra R. Antibacterial in vitro screening of Helminthostachys zeylanica (L.) Hook. root extracts [Internet]. J Pharm Pharmacogn Res. 2023 [acceso: 10/05/2024]; 11(2):291-6. Disponible en: https://jppres.com/jppres/antibacterial-of-helminthostachys-zeylanica-root/#:~:text=Conclusions%3A%20The%20study%20demonstrated%20the,for%20dev-eloping%20new%20antimicrobial%20agents

4. Guglielmi P, Pontecorvi V, Rotondi G. Natural compounds and extracts as novel antimicrobial agents [Internet]. Expert Opinion on Therapeutic Patents. 2020 [acceso: 10/05/2024]; 30(12):949-62. Disponible en: https://pubmed.ncbi.nlm.nih.gov/33203288/

5. Mostafa A, Al-Askar A, Almaary S, Dawoud M, Sholkamy N, Bakri M. Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases [Internet]. Saudi journal of biological sciences. 2018 [acceso: 10/05/2024]; 25(2):361-6. Disponible en: https://www.sciencedirect.com/science/article/pii/S1319562X17300773

6. Alibi S, Crespo D, Navas J. Plant-derivatives small molecules with antibacterial activity [Internet]. Antibiotics. 2021 [acceso: 10/05/2024]; 10(3):231. Disponible en: https://pubmed.ncbi.nlm.nih.gov/33668943/

7. Pulingam T, Parumasivam T, Gazzali M, Sulaiman M, Chee Y, Lakshmanan M, et al. Antimicrobial resistance: Prevalence, economic burden, mechanisms of resistance and strategies to overcome [Internet]. European Journal of Pharmaceutical Sciences. 2022 [acceso: 10/05/2024]; 170:106103. Disponible en: https://www.sciencedirect.com/science/article/pii/S0928098721004048

8. Vílchez-Cáceda H, Cervantes-Ganoza L. Evaluación del efecto antibacteriano sinérgico de rifamicina en propóleo sobre bacterias grampositivas [Internet]. Rev Cub Med Mil. 2021 [acceso: 10/05/2024]; 50(3):e02101336. Disponible en: http://www.revmedmilitar.sld.cu/index.php/mil/article/view/1336

9. Vílchez H, Inocente M, Flores O. Actividad cicatrizante de seis extractos hidroalcohólicos de plantas en heridas incisas de Rattus norvegicus albinus [Internet]. Rev Cub Med Mil. 2020 [acceso: 10/05/2024]; 49(1):86-100. Disponible en: http://www.revmedmilitar.sld.cu/index.php/mil/article/view/489/448

10. Taype E. Diseño de explotación de cantera para agregados, distrito de Huayucachi [Internet]. [Tesis de pregrado]. Huancayo: Universidad del Centro del Perú, Facultad de Ingenieria Civil; 2016. [acceso: 10/05/2024]. Disponible en: https://repositorio.uncp.edu.pe/handle/20.500.12894/4107

11. Ccora M. La relación del ecoturismo y desarrollo sostenible en el distrito de Huayucachi provincia de Huancayo departamento de Junín, período 2020 [Internet]. [Tesis de maestria]. Huancavelica: Universidad Nacional de Huancavelica. Facultad de Ciencias de la Educación; 2021. [acceso: 10/05/2024]. Disponible en: https://repositorio.unh.edu.pe/items/adafe159-0f32-427c-a9a7-f108e75b7dda

12. Ganoza F. Asmachilca: Vernacular name of Eupatorium triplinerve Vahl, Aristeguietia discolor RM King & H. Rob., Aristeguietia gayana Wedd, Baccharis sp. (Asteraceae), Peru [Internet]. Ethnobotany Research and Applications. 2020 [acceso: 10/05/2024]; 19:1-19. Disponible en: https://ethnobotanyjournal.org/index.php/era/article/view/1825

13. Calderon A, Salas J, Dapello G, Gamboa E, Rosas J, Chávez J, et al. Assessment of Antibacterial and Antifungal Properties and In Vivo Cytotoxicity of Peruvian Passiflora Mollisima[Internet]. The Journal of Contemporary Dental Practice. 2019 [acceso: 10/05/2024]; 20(2):145-51. Disponible en: https://www.thejcdp.com/abstractArticleContentBrowse/JCDP/19/20/2/15286/abs-tractArticle/Article

14. Culqui H, Zumaeta C, Quintana S, Silva E. Evaluación de la capacidad antioxidante y actividad antibacteriana del extracto acuoso y etanólico de Cymbopogon citratus[Internet]. Revista Científica UNTRM: Ciencias Naturales e Ingeniería. 2020 [acceso: 10/05/2024]; 3(2):9-15. Disponible en: https://revistas.untrm.edu.pe/index.php/CNI/article/view/608

15. Laux C, Peschel A, Krismer B. Staphylococcus aureus colonization of the human nose and interaction with other microbiome members [Internet]. Microbiology Spectrum. 2019 [acceso: 10/05/2024]; 7(2):7-2. Disponible en: https://pubmed.ncbi.nlm.nih.gov/31004422/

16. Feldman C, Anderson R. Recent advances in the epidemiology and prevention of Streptococcus pneumoniae infections [Internet]. F1000Research. 2020; 9(F1000 Faculty Rev):338. DOI: 10.12688/f1000research.22341.1

17. Jespersen G, Lacey A, Tong Y, Davies R. Global genomic epidemiology of Streptococcus pyogenes[Internet]. Infection, Genetics and Evolution. 2020 [acceso: 10/05/2024]; 86:104609. Disponible en: https://pubmed.ncbi.nlm.nih.gov/33147506/

18. Surco-Laos F, García J, Bendezú M, Laos-Anchante D, Panay-Centeno J, Valle-Campos M, Alvarado A. In vitro antioxidant properties and antimicrobial activity of the ethanolic extract of Senecio nutans Sch. Beep. (Asteraceae) [Internet]. J Pharm Pharmacogn Res. 2022 [acceso: 10/05/2024]; 10(6):1026-36. Disponible en: https://jppres.com/jppres/antioxidant-and-antimicrobial-activity-of-senecio-nutans/

19. Cane H, Musman M, Yahya M, Saidi N, Darusman D, Nanda M, et al. Phytochemical screening and antibacterial activity of ethnomedicinal plants from Gayo Lues Highland, Indonesia [Internet]. J Pharm Pharmacogn Res. 2023 [acceso: 10/05/2024]; 11(1):117-28. Disponible en: https://jppres.com/jppres/antibacterial-plants-from-gayo-lues-highland/

20. Ramirez J, Velasquez-Arevalo S, Rodriguez C, Villarreal-La Torre V. Culcitium canescens Humb. & Bonpl. (Asteraceae): an ethnobotanical, ethnopharmacological and phytochemical review [Internet]. Ethnobotany Research and Applications. 2020 [acceso: 10/05/2024]; 19:1-14. Disponible en: https://ethnobotanyjournal.org//index.php/era/article/view/1815

21. Espinoza A. Actividad antioxidante y antibacteriana in vitro del extracto seco hidroalcohólico al 70 % de Caiophora cirsiifolia c. Presl "Ccori Kisa" sobre cepas ATCC y cepas aisladas de Staphylococcus aureus [Internet]. [Tesis de pregrado]. Cusco: Universidad Nacional de San Antonio Abad del Cusco, Facultad de Ciencias de la Salud; 2018. [acceso: 10/05/2024]. Disponible en: https://alicia.concytec.gob.pe/vufind/Record/RUNS_ca9556bedca4997218dcdd7abf3-3d2f4/Details

22. Shala Y, Gururani A. Phytochemical properties and diverse beneficial roles of Eucalyptus globulus labill.: a review [Internet]. Horticulturae. 2021; 7(11):450. DOI: 10.3390/horticulturae7110450

23. Sharifi-Rad J, Quispe C, Herrera-Bravo J, Akram M, Abbaass W, Semwal P, et al. Phytochemical constituents, biological activities, and health-promoting effects of the Melissa officinalis [Internet]. Oxidative Medicine and Cellular Longevity. 2021 [acceso: 10/05/2024]; 2021:1-20. Disponible en: https://www.hindawi.com/journals/omcl/2021/6584693/

24. Vílchez H, Olortegui A, Alvia C. Efecto antibacteriano del extracto hidroalcohólico de Solanum sessiliflorum Dunal (cocona) sobre Streptococcus mutans [Internet] . Rev Cub Med Mil. 2023 [acceso: 10/05/2024]; 52(1):02302340. Disponible en: https://revmedmilitar.sld.cu/index.php/mil/article/view/2340

25. Gorlenko L, Kiselev Y, Budanova V, Zamyatnin Jr A, Ikryannikova N. Plant secondary metabolites in the battle of drugs and drug-resistant bacteria: new heroes or worse clones of antibiotics? [Internet]. Antibiotics. 2023 [acceso: 10/05/2024]; 9(4):170. Disponible en: https://pubmed.ncbi.nlm.nih.gov/32290036/

26. Ibrahim M, Alshammaa S. Pharmacological aspects of Borago officinalis (Borage): A review article [Internet]. Iraqi Journal of Pharmaceutical Sciences. 2023 [acceso: 10/05/2024]; 32(1):1-13. Disponible en: https://bijps.uobaghdad.edu.iq/index.php/bijps/article/view/1611

27. Tocai A, Kokeric T, Tripon S, Barbu-Tudoran L, Barjaktarevic A, Cupara S, et al. Sanguisorba minor Scop.: An Overview of Its Phytochemistry and Biological Effects [Internet]. Plants. 2023; 12(11):2128. DOI: 10.3390/plants12112128

28. Villena-Tejada M, Vera-Ferchau I, Cardona-Rivero A, Zamalloa-Cornejo R, Quispe-Florez M, Frisancho-Triveño Z, et al. Use of medicinal plants for COVID-19 prevention and respiratory symptom treatment during the pandemic in Cusco, Peru: A cross-sectional survey [Internet]. PLoS ONE. 2021 [acceso: 10/05/2024]; 16(9):e0257165. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0257165

Published

2024-06-28

How to Cite

1.
Vilchez-Cáceda HA, Rojas-Berastein K, Alvia-Saldarriaga CA, Takahashi-Ferrer CM. Antibacterial effect of nine hydroalcoholic extracts of ethnomedicinal plants from Huayucachi-Peru on gram-positive bacteria. Rev Cubana Med Milit [Internet]. 2024 Jun. 28 [cited 2025 Apr. 3];53(3):e024043497. Available from: https://revmedmilitar.sld.cu/index.php/mil/article/view/43497

Issue

Section

Research Article