The lost horizon and the urgent need to define time in COVID-19 predictive models

Authors

Keywords:

algorithms, biomarkers, COVID-19, forecasting, logistic models, predictive value of tests, prognosis, sensitivity and specificity, time factors

Abstract

Predictive models of hyperinflammation in COVID-19 suffer from a critical flaw: the omission of the temporal dimension or prognostic horizon. Although they exhibit high statistical accuracy, this lacks clinical utility if the specific timeframe for which the event is predicted is not defined. The pathophysiology of the disease is dynamic, and the cytokine storm occurs within a specific time window. Predicting hyperinflammation without a defined timeframe (e.g., 48 hours vs. 7 days) prevents the guidance of timely therapeutic interventions, whose effectiveness is maximized when applied early. The predominant methodology, such as logistic regression, oversimplifies this reality. It is proposed to adopt techniques such as survival analysis, which explicitly models the time to the event. Integrating the "when" is crucial to transforming statistical tools into clinically relevant instruments that improve decision-making.

Downloads

Download data is not yet available.

Author Biographies

Lodixi Cobas Planchez, Hospital Clinico Quirurgico Hermanos Ameijeiras

Departamento de Cirugía Cardiovascular. Profesor Titular. Doctor en Ciencias Médicas.

Natascha Mezquia de Pedro, Facultad de Ciencias Médicas "Dr. Miguel Enríquez"

Profesora en investigadora Titular. Doctora en Ciencias Médicas.

References

1. Steyerberg EW. Clinical prediction models: A practical approach to development, validation, and updating. 2a ed. Cham, Suiza: Springer Nature; 2020.

2. Silva MJA, Ribeiro LR, Gouveia MIM, Marcelino BDR, Santos CSD, Lima KVB, Lima LNGC. Hyperinflammatory Response in COVID-19: A Systematic Review [Internet]. Viruses. 2023;15(2):553. DOI: https://doi:10.3390/v15020553

3. Ferrer Castro JE, del Río Caballero G, Amaro Guerra I, Benítez Sánchez E, Rodríguez González Z. Modelo predictivo de hiperinflamación en pacientes con la COVID-19 [Internet]. Rev. cuba. med. Mil. 2025 [acceso: 10/10/20225];54(4):e025076744. Disponible en: https://revmedmilitar.sld.cu/index.php/mil/article/view/76744

4. Wolff RF, Moons KGM, Riley RD, Whiting PF, Westwood M, Collins GS, et al. PROBAST: A Tool to Assess the Risk of Bias and Applicability of Prediction Model Studies [Internet]. Ann Intern Med. 2019;170(1):51-58. DOI: https://doi:10.7326/M18-1376

5. Song Q, Fei W. Evaluation of Sepsis-1 and Sepsis-3 Diagnostic Criteria in Patients with Sepsis in Intensive Care Unit [Internet]. J Healthc Eng. 2023 ;2023:3794886. DOI: https://doi:10.1155/2023/3794886

6. Van Calster B, McLernon DJ, van Smeden M. Calibration: the Achilles heel of predictive analytics [Internet]. BMC Med. 2019; 17:230. DOI: https://doi.org/10.1186/s12916-019-1466-7

7. Kent P, Cancelliere C, Boyle E. A conceptual framework for prognostic research [Internet]. BMC Med Res Methodol. 2020; 20:172. DOI: https://doi.org/10.1186/s12874-020-01050-7

8. Rajasekaran S, Kruse K, Kovey K, Davis AT, Hassan NE, Ndika AN, et al. Therapeutic role of anakinra, an interleukin-1 receptor antagonist, in the management of secondary hemophagocytic lymphohistiocytosis/sepsis/multiple organ dysfunction/macrophage activating syndrome in critically ill children [Internet]. Pediatr Crit Care Med. 2014;15(5):401-8. DOI: https://doi:10.1097/PCC.0000000000000078

9. Wynants L, Van Calster B, Collins GS, Riley RD, Heinze G, Schuit E, et al. Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal [Internet]. BMJ. 2020;369:1328. DOI: https://doi:10.1136/bmj.m1328

10. Laing AG, Lorenc A, Del Molino Del Barrio I, Das A, Fish M, et al. A dynamic COVID-19 immune signature includes associations with poor prognosis [Internet]. Nat Med. 2020;26(10):1623-35. DOI: https://doi:10.1038/s41591-020-1038-6

11. Ouko RK, Mukaka M, Ohuma EO. Joint modelling of longitudinal data: a scoping review of methodology and applications for non-time to event data [Internet]. BMC Med Res Methodol. 2025; 25(1):40. DOI: https://doi:10.1186/s12874-025-02485-6

Published

2026-02-11

How to Cite

1.
Cobas Planchez L, Mezquia de Pedro N. The lost horizon and the urgent need to define time in COVID-19 predictive models. Rev. cuba. med. mil [Internet]. 2026 Feb. 11 [cited 2026 Feb. 12];55(1):e026077085. Available from: https://revmedmilitar.sld.cu/index.php/mil/article/view/77085