Predictive model for recurrence in patients with thyroid cancer
Keywords:
thyroid tumor, predictive model, logistic regression.Abstract
Introduction: Thyroid cancer is the most common malignant tumor originating in endocrine organs (more than 92%) and comprises a group of tumors that are clinically and epidemiologically different. In recent years, the use of predictive models has increased in medical practice to determine the best behavior in patients with tumors of the thyroid gland.Objective: To develop a probabilistic model for predicting recurrence in patients with thyroid cancer.
Methods: A longitudinal prospective study was carried out at the "Dr. Carlos J Finlay" Central Military Hospital, from January 2015 to February 2020. 63 patients who entered the study by simple random sampling with replacement were included; a predictive model was made using a binary logistic regression in program R.
Results: The most affected age group was between 40 and 59 years old, female sex predominated and papillary carcinoma, vascularization and irregularity were the most detected ultrasound elements. The Wald statistic was significant with a normal distribution in all variables analyzed, which indicates that their coefficients are different from 0 and should be included in the model. The variable with the greatest influence on the recurrence rate turned out to be cell differentiation.
Conclusions: The final binary logistic regression model had an adequate goodness of fit and discrimination was very good, with an acceptable receiving operator area under the curve.
Downloads
References
2. Cabanillas ME, McFadden DG, Durante C. Thyroid cancer. Lancet. 2016[acceso: 01/02/2019]; 388:2783-2795. Disponible en: https://pubmed.ncbi.nlm.nih.gov/27240885/
3. González Tabares R. Necesidad de un sistema ecográfico de estratificación del riesgo de malignidad en lesiones nodulares del tiroides. Revista Cubana de Medicina Militar. 2020 [acceso: 31/07/2020];49(2):352-63. Disponible en: https://www.revmedmilitar.sld.cu/index.php/mil/article/view/433/440
4. Mazzaferri EL. Management of low-risk differentiated thyroid cancer. Endocr Pract. 2007[acceso: 03/08/2020]; 13:498-512. Disponible en: https://pubmed.ncbi.nlm.nih.gov/17872353/
5. Horvath E, Niedmann JP, Dominguez M, Rossi R, Majlis S, Franco C, et al. An Ultrasonogram Reporting System for Thyroid Nodules Stratifying Cancer Risk for Clinical Management. J Clin Endocrinol Metab. 2009[acceso: 02/04/2020]; 94(5):1748-51. Disponible en: https://dx.doi.org/10.1210/jc.2008-1724
6. Ceballos Díaz ME, Malpica Mederos AJ, Guerra González A, Machado del Risco E. Nódulo de Tiroides: estudio ecográfico. Revista Archivo Médico de Camagüey. 2009[acceso: 4/07/2020]; 13(3):[aprox. 8 p.]. Disponible en: https://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1025-02552009000300006
7. Manso García S, Velasco Marcos MJ. Valor actual de la ecografía en la caracterización de los nódulos tiroideos: Revisión de las últimas guías clínicas de actuación. Radiología. 2015 [acceso:14/05/2018];57(3): [aprox. 11 p.]. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0033833814000587
8. Haugen BR, Alexander EK, Bible KC, Doherty GM, 2015. American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016[acceso: 31/08/2019];26(1):1-133. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739132/
9. Gao M, Ge M, Ji Q, Cheng R, Lu H, Guan H, et al. Chinese Association Of Thyroid Oncology Cato Chinese Anti-Cancer Association. Chinese expert consensus and guidelines for the diagnosis and treatment of papillary thyroid microcarcinoma. Cancer Biol Med. 2017[acceso: 11/06/2019];14(3):203-211. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5570598/
10. Mitchell AL, Gandhi A, Scott-Coombes D, Perros P. Management of thyroid cancer: United Kingdom National Multidisciplinary Guidelines. J Laryngol Otol. 2016[acceso: 11/06/2019]; 130(S2): S150-S160. Disponible en: https://pubmed.ncbi.nlm.nih.gov/27841128/
11. Sancho JJ, Lennard TW, Paunovic I, Triponez F, Sitges-Serra A. Prophylactic central neck disection in papillary thyroid cancer: a consensus report of the European Society of Endocrine Surgeons (ESES). Langenbecks Arch Surg. 2014[acceso: 11/06/2019]; 399(2):155-63. Disponible en: https://pubmed.ncbi.nlm.nih.gov/24352594/
12. Huang XP, Ye TT, Zhang L, Liu RF, Lai XJ, Wang L, et al. Predictive factors for central lymph node metastases in papillary thyroid microcarcinoma. World J Clin Cases. 2020 [acceso: 17/09/2020]26;8(8):1350-1360. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7190943/
13.Wang Y, Guan Q, Xiang J. Nomogram for predicting central lymph node metastasis in papillary thyroid microcarcinoma: A retrospective cohort study of 8668 patients. Int J Surg. 2018[acceso: 13/09/2020];55(7):98-102. Disponible en: https://www.sciencedirect.com/science/article/pii/S1743919118307714
14. Hwang HS, Orloff LA. Efficacy of preoperative neck ultrasound in the detection of cervical lymph node metastasis from thyroid cancer. Laryngoscope. 2011[acceso: 13/09/2020]; 121(3):487-91. Disponible en: https://pubmed.ncbi.nlm.nih.gov/21344423/
15. Kwak JY, Kim EK, Kim MJ, Son EJ, Chung WY, Park CS. Papillary microcarcinoma of the thyroid: predicting factors of lateral neck node metastasis. Ann Surg Oncol. 2009[acceso: 03/07/2020] ;16(5):1348-55. Disponible en: https://link.springer.com/article/10.1245/s10434-009-0384-x
16. Lee YJ, Kim DW, Park HK, Kim DH, Jung SJ, Oh M, et al. Pre-operative ultrasound diagnosis of nodal metastasis in papillary thyroid carcinoma patients according to nodal compartment. Ultrasound Med Biol 2015[acceso: 3/07/2020]; 41(5):1294-300. Disponible en: https://pubmed.ncbi.nlm.nih.gov/25703430/
17. Mota JD, García J. Carcinoma indiferenciado de la glándula tiroides. Estudio histológico e inmunohistoquímico en cinco casos. Rev Facul Med. 2017[acceso: 03/04/2019]; 25(2):87-103. Disponible en: https://ve.scielo.org/scielo.php?pid=S0798-04692002000100030&script=sci_arttext
Published
How to Cite
Issue
Section
License
Authors who have publications with this Journal accept the following terms:
- The authors will retain their copyright and guarantee the Journal the right of first publication of their work, which will simultaneously be subject to the Creative Commons Attribution License. The content presented here can be shared, copied and redistributed in any medium or format; Can be adapted, remixed, transformed or created from the material, using the following terms: Attribution (giving appropriate credit to the work, providing a link to the license, and indicating if changes have been made); non-commercial (you cannot use the material for commercial purposes) and share-alike (if you remix, transform or create new material from this work, you can distribute your contribution as long as you use the same license as the original work).
- The authors may adopt other non-exclusive license agreements for the distribution of the published version of the work (for example: depositing it in an institutional electronic archive or publishing it in a monographic volume) as long as the initial publication in this Journal is indicated.
- Authors are allowed and recommended to disseminate their work through the Internet (e.g., in institutional electronic archives or on their website) before and during the submission process, which can produce interesting exchanges and increase citations. of the published work.