Evolución de los parámetros bioeléctricos asociados a la edad en niños y adolescentes de 2 a 16 años
Resumen
Introducción: Los cambios fisiológicos que se manifiestan en niños y adolescentes durante su crecimiento y desarrollo impactan de forma significativa en su vida adulta.
Objetivo: Evaluar mediante el análisis del vector de impedancia bioeléctrica la evolución de los cambios fisiológicos en 2 muestras de niños y adolescentes.
Métodos: Se utilizaron 2 muestras de niños y adolescentes de ambos sexos, una cubana de 1067 individuos y otra italiana de 1823, procedentes de 2 bases de datos. Se realizó el nomograma y el ajuste lineal a cada muestra, basado en modelo matemático de la forma , para caracterizar la trayectoria de los datos de cada muestra.
Resultados: En la muestra cubanalos vectores medios de impedancia se solapan desde el grupo etario 2 años hasta el grupo de 12 años. A partir de los 13 años, los vectores de ambos sexos se separan. En la muestra italiana, estos vectores se solapan desde el grupo etario 2 años hasta el grupo de 13 años. A partir de los 14-15 años, los vectores de ambos sexos se separan. Ambas muestras siguieron una línea recta decreciente con el aumento de la edad.
Conclusiones: Los cambios que ocurren en los vectores bioeléctricos, desde la niñez hasta la adolescencia, se deben a modificaciones en los estadios que llevan de la niñez a la pubertad, desde el punto de vista fisiológico.
Palabras clave
Referencias
Thibault R, Genton L, Pichard C. Body composition: why, when and for who? [Internet]. Clin Nutr 2012; 31(4):435-47. DOI: 10.1016/j.clnu.2011.12.011
Adami F, Benedet J, Takahashi LAR, da Silva Lopes A, da Silva Paiva L, de Vasconcelos FAG. Association between pubertal development stages and body adiposity in children and adolescents [Internet]. Health Qual Life Outcomes. 2020; 18(1):1-9. DOI: 10.1186/s12955-020-01342-y
de Castro JAC, de Lima TR & Silva DAS. Body composition estimation in children and adolescents by bioelectrical impedance analysis: A systematic review [Internet]. Journal of bodywork and movement therapies. 2018; 22(1):134-146. DOI: 10.3945/an.113.005371
Ballarin G, Alicante P, Di Vicenzo O, Scalfi L. Bioelectrical impedance analysis (BIA)-derived phase angle in children and adolescents: a systematic review [Internet]. Journal of Pediatric Gastroenterology and Nutrition. 2022; 75(2):120-30. DOI: 10.1097/MPG.0000000000003488
Moonen HPFX, Van Zanten ARH. Bioelectric impedance analysis for body composition measurement and other potential clinical applications in critical illness [Internet]. Current Opinion in Critical Care. 2021; 27(4):344. DOI: 10.1097/MCC.0000000000000840
Luengpradidgun L, Chamroonkul N, Sripongpun P, Kaewdech A, Tanutit P, Ina N, et al. Utility of handgrip strength (HGS) and bioelectrical impedance analysis (BIA) in the diagnosis of sarcopenia in cirrhotic patients [Internet]. BMC Gastroenterology. 2022; 22(1):1-8. DOI: 10.1186/s12876-022-02236-7
Hioka A, Akazawa N, Okawa N, Nagahiro S. Extracellular water-to-total body water ratio is an essential confounding factor in bioelectrical impedance analysis for sarcopenia diagnosis in women [Internet]. European Geriatric Medicine. 2022; 13(4):789-94. DOI: 10.1007/s41999-022-00652-2
Roehrich L, Suendermann S, Just IA, Knierim J, Mulzer J, Mueller M, et al. Safety of bioelectrical impedance analysis in advanced heart failure patients [Internet]. Pacing and Clinical Electrophysiology. 2020; 43(10):1078-85. DOI: 10.1111/pace.14018
Kozhevnikova AV, Belyanin OL, Vlasova OL. Experimental Testing of a Method for Objective Registration of the Pain Syndrome [Internet]. Biophysics. 2021; 66(6):1032-6. DOI: 10.1134/S0006350921060075
Kechagias D, Chatzipapas C, Karaglani M, Tilkeridis K, Ververidis A, Drosos G. Efficacy of bioelectrical impedance analysis for the evaluation of physical impairment in chronic low back pain. Results from a cohort study [Internet]. Folia Medica. 2021; 63(6):919-27. DOI: 10.3897/folmed.63.e59311
Lebiedowska A, Hartman-Petrycka M, Blonska-Fajfrowska B. How reliable is BMI? Bioimpedance analysis of body composition in underweight, normal weight, overweight, and obese women [Internet]. Irish Journal of Medical Science. 2021;1 90(3):993-8. DOI: 10.1007/s11845-020-02403-3
Vasold KL, Parks AC, Phelan DM, Pontifex MB, Pivarnik JM. Reliability and validity of commercially available low-cost bioelectrical impedance analysis [Internet]. International Journal of Sport Nutrition and Exercise Metabolism. 2019; 29(4):406-10. DOI: 10.1123/ijsnem.2018-0283
Mascherini G, Zappelli E, Leone B, Musumeci G, Totti V, Irurtia A, et al. Bioelectrical impedance vector analysis (BIVA) in renal transplant recipients during an unsupervised physical exercise program [Internet]. The Journal of Sports Medicine and Physical Fitness. 2020; 60(4):594-600. DOI: 10.23736/S0022-4707.19.10181-8
Cuevas MDLAE, Durán LXC, Carsi XA, Ortiz AJG, Acevedo SR, Cisneros SL, et al. Agreement between vector analysis and body composition measurements by four types of bioelectrical impedance technology in hemodialysis patients [Internet]. Nutrición Hospitalaria. 2022; 39(5):1047-57. DOI: 10.20960/nh.04005
De la Cruz Marcos S, Redondo del Río MP, de Mateo Silleras B. Applications of Bioelectrical Impedance Vector Analysis (BIVA) in the Study of Body Composition in Athletes [Internet]. Applied Sciences. 2021; 11(21):9781. DOI: 10.3390/app11219781
Sugizaki CS, Queiroz NP, Silva DM, Freitas AT, Costa NA, Peixoto MR. Comparison of bioelectrical impedance vector analysis (BIVA) to 7-point subjective global assessment for the diagnosis of malnutrition [Internet]. Brazilian Journal of Nephrology. 2021; 44(2):171-8. DOI: 10.1590/2175-8239-JBN-2021-0099
Miranda-Alatriste PV, Colín-Ramírez E, Atilano-Carsi X, Cruz Rivera C, Espinosa-Cuevas Á. Estado de hidratación por vectores de impedancia y su asociación con desenlaces clínicos, bioquímicos y mortalidad en pacientes con enfermedad renal crónica [Internet]. Nutrición Hospitalaria. 2022; 39(5):1037-46. DOI: 10.20960/nh.03970
Stagi S, Silva AM, Jesus F, Campa F, Cabras S, Earthman CP, et al. Usability of classic and specific bioelectrical impedance vector analysis in measuring body composition of children [Internet]. Clinical Nutrition. 2022; 41(3):673-9. DOI: 10.1016/j.clnu.2022.01.021
Luszczki E, Bartosiewicz A, Kuchciak M, Deren K, Oleksy L, Adamska O, et al. Longitudinal analysis of resting energy expenditure and body mass composition in physically active children and adolescents [Internet]. BMC Pediatr. 2022; 22(1):260. DOI: 10.3390/nu11061215
Wells JC. Body composition of children with moderate and severe undernutrition and after treatment: a narrative review [Internet]. BMC Medicine. 2019; 17(1):215. DOI: 10.1186/s12916-019-1465-8
Tarupi W, Lepage Y, Felix ML, Monnier C, Hauspie R, Roelants M, et al. Referencias de peso, estatura e índice de masa corporal para niñas y niños ecuatorianos de 5 a 19 años de edad [Internet]. Archivos Argentinos de Pediatría. 2020 [acceso: 10/01/2023]; 118(2):117-24. Disponible en: https://www.sap.org.ar/docs/publicaciones/archivosarg/2020/v118n2a08.pdf
Uribe MCO, Arce DCO, Navarrete CE. Factores de riesgo en el crecimiento y desarrollo de niños prescolares [Internet]. Archivos Venezolanos de Farmacología y Terapéutica. 2019 [acceso: 10/01/2023]; 38(4):496-500. Disponible en: https://www.redalyc.org/journal/559/55964256021/55964256021.pdf
Nescolarde L, Núñez A, Bogónez P, Lara A, Vaillant G, Morales R, et al. Reference values of the bioimpedance vector components in a Caribbean population [Internet]. e-SPEN Journal. 2013; 8(4):141-4. DOI: 10.1016/j.clnme.2013.04.004
De Palo T, Messina G, Edefonti A, Perfumo F, Pisanello L, Peruzzi L, et al. Normal values of the bioelectrical impedance vector in childhood and puberty [Internet]. Nutrition. 2000; 16(6):417-24. DOI: 10.1016/s0899-9007(00)00269-0
National Institutes of Health. Bioelectrical impedance analysis in body composition measurement: National Institutes of Health Technology Assessment Conference Statement [Internet]. Am J Clin Nutr. 1996; 64(3):524-32. DOI: 10.1093/ajcn/64.3.524s
Alves HJ, Ferreira DF. Proposition of new alternative tests adapted to the traditional T2 test [Internet]. Communications in Statistics-Simulation and Computation. 2022; 51(5):2287-2300. DOI: 10.1080/03610918.2019.1693596
Moore SA, Cumming SP, Balletta G, Ramage K, Eisenmann JC, Baxter Jones AD, et al. Exploring the relationship between adolescent biological maduration, physical activity and sedentary behavior: a systematic review and narrative synthesis [Internet]. Annals of Human Biology. 2020; 47(4):365-83. DOI: 10.1080/03014460.2020.1805006
Oliveira M, Henrique RS, Queiroz DR, Salvina M, Melo WV, dos Santos MA. Anthropometric variables, propulsive force and biological maturation: a mandatory analysis in young swimmers [Internet]. European Journal of Sport Science. 2021; 21(4):507-14. DOI: 10.1080/17461391.2020.1754468
Redondo-del-Río MP, Camina-Martín MA, Marugán-de-Miguelsanz JM, de-Mateo-Silleras B. Bioelectrical impedance vector reference values for assessing body composition in a Spanish child and adolescent population [Internet]. American Journal of Human Biology. 2017; 29(4):e22978. DOI: 10.1002/ajhb.22978
Wiech P, Salacinska I, Baczek M, Bazalinski D. The nutritional status of healthy children using bioelectrical impedance and anthropometric measurement [Internet]. Jornal de Pediatria. 2022; 98(2):161-7. DOI: 10.1016/j.jped.2021.05.009
Almeida YL, Maia CSC, Barros NE, Moreno LA, Carioca AAF, Loureiro AC. Is bioelectrical impedance vector analysis a good indicator of nutritional status in children and adolescents? [Internet]. Public Health Nutrition. 2021; 24(14):4408-16. DOI: 10.1017/S1368980021002226
Watanabe T, Ishida N, Takaoka M, Tsujimoto K, Kondo K, Isoda R, et al. Bioelectrical impedance analysis for perioperative water management in adult cardiovascular valve disease surgery [Internet]. Surgery Today. 2021; 51(6):1061-7. DOI: 10.1007/s00595-020-02184-3
Ward LC, Brantlov S. Bioimpedance basics and phase angle fundamentals [Internet]. Reviews in Endocrine and Metabolic Disorders. 2023; 24(3):381-91. DOI: 10.1007/s11154-022-09780-3
Sumner JA, Colich NL, Uddin M, Armstrong D, McLaughlin KA. Early experiences of treath, but not deprivation, are associated with accelerated biological aging in children and adolescents [Internet]. Biological Psychiatry. 2019; 85(3):268-78. DOI: 10.1016/j.biopsych.2018.09.008
Baxter-Jones AD, Barbour-Tuck EN, Dale D, Sherar LB, Knight CJ, Cumming SP, et al. The role of growth and maturation during adolescence on team-selection and short-term sports participation [Internet]. Annals of Human Biology. 2020; 47(4):316-23. DOI: 10.1080/03014460.2019.1707870
Orsso CE, González MC, Maisch MJ, Haqq AM, Prado CM. Using bioelectrical impedance analysis in children and adolescents: pressing issue [Internet]. European Journal of Clinical Nutrition. 2022; 76(5):659-65. DOI: 10.1038/s41430-021-01018-w
Abou El Ella SS, Barseem NF, Tawfik MA, Ahmed AF. BMI relationship to the onset of puberty: assessment of growth parameters and sexual maturity changes in Egyptian children and adolescents of both sexes [Internet]. Journal of Pediatric Endocrinology and Metabolism. 2020; 33(1):121-128. DOI: 10.1515/jpem-2019-0119
Khan S, Xanthakos SA, Hornung L, Arce-Clachar C, Siegel R, Kalkwarf HJ. Relative accuracy of bioelectrical impedance analysis for assessing body composition in children with severe obesity [Internet]. Journal of pediatric gastroenterology and nutrition. 2020; 70(6):129-35. DOI: 10.1097/MPG.0000000000002666
Enlaces refback
- No hay ningún enlace refback.
URL de la licencia: https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es