Evolution of age-associated bioelectrical parameters in children and adolescents aged 2-16 years

Authors

Keywords:

adolescence, bioelectrical impedance, body composition, electrical resistance, growth and develop.

Abstract

Introduction: The physiological changes that manifest in children and adolescents during their growth and development have a significant impact on their adult life.
Objective: To evaluate the evolution of physiological changes in 2 samples of children and adolescents using bioelectrical impedance vector analysis.
Methods: Two samples of infant-juvenile populations of both sexes were used, a Cuban sample of 1067 individuals and an Italian sample of 1823, from two databases. The nomogram and the linear fit to each sample were performed, based on a mathematical model of the form characterize the trajectory of the data of each sample.
Results: In the Cuban sample, the mean impedance vectors overlap from the 2 age group to the 12 age group. From the age of 13 years, the vectors of both sexes separate. In the Italian sample, these vectors overlap from the age group 2 years to the age group 13 years. From the 14 to 15 age group, the vectors of both sexes are separate. Both samples followed a straight line, decreasing with increasing age.
Conclusions: The changes that occur in the bioelectrical vectors from childhood to adolescence are due to modifications in the stages that lead from childhood to puberty from the physiological point of view.

Downloads

Download data is not yet available.

Author Biographies

Taira Batista Luna, Universidad Autónoma de Santo Domingo

Profesor Física. Departamento de Física

José Luis García Bello, Universidad Autónoma de Santo Domingo

Profesor Física. Departamento de Física

Héctor Manuel Camué Ciria, Centro Nacional de Electromagnetismo Aplicado (CNEA). Universidad de Oriente

Dr.C., Departamento de Ciencia, Tecnología e Innovación

Agustín Garzón Carbonell, Centro Nacional de Electromagnetismo Aplicado (CNEA). Universidad de Oriente

MSc. Departamento de Desarrollo Tecnológico

Ana de la Caridad Román Montoya, Centro Nacional de Electromagnetismo Aplicado (CNEA). Universidad de Oriente

Dra. Departamento de Desarrollo Tecnológico

Alcibíades Lara Lafargue, Centro Nacional de Electromagnetismo Aplicado (CNEA). Universidad de Oriente

MSc. Departamento de Desarrollo Tecnológico

Néstor Juan Rodríguez de la Cruz, Universidad Autónoma de Santo Domingo

Profesor Física. Departamento de Física

References

1. Thibault R, Genton L, Pichard C. Body composition: why, when and for who? [Internet]. Clin Nutr 2012; 31(4):435-47. DOI: 10.1016/j.clnu.2011.12.011

2. Adami F, Benedet J, Takahashi LAR, da Silva Lopes A, da Silva Paiva L, de Vasconcelos FAG. Association between pubertal development stages and body adiposity in children and adolescents [Internet]. Health Qual Life Outcomes. 2020; 18(1):1-9. DOI: 10.1186/s12955-020-01342-y

3. de Castro JAC, de Lima TR & Silva DAS. Body composition estimation in children and adolescents by bioelectrical impedance analysis: A systematic review [Internet]. Journal of bodywork and movement therapies. 2018; 22(1):134-146. DOI: 10.3945/an.113.005371

4. Ballarin G, Alicante P, Di Vicenzo O, Scalfi L. Bioelectrical impedance analysis (BIA)-derived phase angle in children and adolescents: a systematic review [Internet]. Journal of Pediatric Gastroenterology and Nutrition. 2022; 75(2):120-30. DOI: 10.1097/MPG.0000000000003488

5. Moonen HPFX, Van Zanten ARH. Bioelectric impedance analysis for body composition measurement and other potential clinical applications in critical illness [Internet]. Current Opinion in Critical Care. 2021; 27(4):344. DOI: 10.1097/MCC.0000000000000840

6. Luengpradidgun L, Chamroonkul N, Sripongpun P, Kaewdech A, Tanutit P, Ina N, et al. Utility of handgrip strength (HGS) and bioelectrical impedance analysis (BIA) in the diagnosis of sarcopenia in cirrhotic patients [Internet]. BMC Gastroenterology. 2022; 22(1):1-8. DOI: 10.1186/s12876-022-02236-7

7. Hioka A, Akazawa N, Okawa N, Nagahiro S. Extracellular water-to-total body water ratio is an essential confounding factor in bioelectrical impedance analysis for sarcopenia diagnosis in women [Internet]. European Geriatric Medicine. 2022; 13(4):789-94. DOI: 10.1007/s41999-022-00652-2

8. Roehrich L, Suendermann S, Just IA, Knierim J, Mulzer J, Mueller M, et al. Safety of bioelectrical impedance analysis in advanced heart failure patients [Internet]. Pacing and Clinical Electrophysiology. 2020; 43(10):1078-85. DOI: 10.1111/pace.14018

9. Kozhevnikova AV, Belyanin OL, Vlasova OL. Experimental Testing of a Method for Objective Registration of the Pain Syndrome [Internet]. Biophysics. 2021; 66(6):1032-6. DOI: 10.1134/S0006350921060075

10. Kechagias D, Chatzipapas C, Karaglani M, Tilkeridis K, Ververidis A, Drosos G. Efficacy of bioelectrical impedance analysis for the evaluation of physical impairment in chronic low back pain. Results from a cohort study [Internet]. Folia Medica. 2021; 63(6):919-27. DOI: 10.3897/folmed.63.e59311

11. Lebiedowska A, Hartman-Petrycka M, Blonska-Fajfrowska B. How reliable is BMI? Bioimpedance analysis of body composition in underweight, normal weight, overweight, and obese women [Internet]. Irish Journal of Medical Science. 2021;1 90(3):993-8. DOI: 10.1007/s11845-020-02403-3

12. Vasold KL, Parks AC, Phelan DM, Pontifex MB, Pivarnik JM. Reliability and validity of commercially available low-cost bioelectrical impedance analysis [Internet]. International Journal of Sport Nutrition and Exercise Metabolism. 2019; 29(4):406-10. DOI: 10.1123/ijsnem.2018-0283

13. Mascherini G, Zappelli E, Leone B, Musumeci G, Totti V, Irurtia A, et al. Bioelectrical impedance vector analysis (BIVA) in renal transplant recipients during an unsupervised physical exercise program [Internet]. The Journal of Sports Medicine and Physical Fitness. 2020; 60(4):594-600. DOI: 10.23736/S0022-4707.19.10181-8

14. Cuevas MDLAE, Durán LXC, Carsi XA, Ortiz AJG, Acevedo SR, Cisneros SL, et al. Agreement between vector analysis and body composition measurements by four types of bioelectrical impedance technology in hemodialysis patients [Internet]. Nutrición Hospitalaria. 2022; 39(5):1047-57. DOI: 10.20960/nh.04005

15. De la Cruz Marcos S, Redondo del Río MP, de Mateo Silleras B. Applications of Bioelectrical Impedance Vector Analysis (BIVA) in the Study of Body Composition in Athletes [Internet]. Applied Sciences. 2021; 11(21):9781. DOI: 10.3390/app11219781

16. Sugizaki CS, Queiroz NP, Silva DM, Freitas AT, Costa NA, Peixoto MR. Comparison of bioelectrical impedance vector analysis (BIVA) to 7-point subjective global assessment for the diagnosis of malnutrition [Internet]. Brazilian Journal of Nephrology. 2021; 44(2):171-8. DOI: 10.1590/2175-8239-JBN-2021-0099

17. Miranda-Alatriste PV, Colín-Ramírez E, Atilano-Carsi X, Cruz Rivera C, Espinosa-Cuevas Á. Estado de hidratación por vectores de impedancia y su asociación con desenlaces clínicos, bioquímicos y mortalidad en pacientes con enfermedad renal crónica [Internet]. Nutrición Hospitalaria. 2022; 39(5):1037-46. DOI: 10.20960/nh.03970

18. Stagi S, Silva AM, Jesus F, Campa F, Cabras S, Earthman CP, et al. Usability of classic and specific bioelectrical impedance vector analysis in measuring body composition of children [Internet]. Clinical Nutrition. 2022; 41(3):673-9. DOI: 10.1016/j.clnu.2022.01.021

19. Luszczki E, Bartosiewicz A, Kuchciak M, Deren K, Oleksy L, Adamska O, et al. Longitudinal analysis of resting energy expenditure and body mass composition in physically active children and adolescents [Internet]. BMC Pediatr. 2022; 22(1):260. DOI: 10.3390/nu11061215

20. Wells JC. Body composition of children with moderate and severe undernutrition and after treatment: a narrative review [Internet]. BMC Medicine. 2019; 17(1):215. DOI: 10.1186/s12916-019-1465-8

21. Tarupi W, Lepage Y, Felix ML, Monnier C, Hauspie R, Roelants M, et al. Referencias de peso, estatura e índice de masa corporal para niñas y niños ecuatorianos de 5 a 19 años de edad [Internet]. Archivos Argentinos de Pediatría. 2020 [acceso: 10/01/2023]; 118(2):117-24. Disponible en: https://www.sap.org.ar/docs/publicaciones/archivosarg/2020/v118n2a08.pdf

22. Uribe MCO, Arce DCO, Navarrete CE. Factores de riesgo en el crecimiento y desarrollo de niños prescolares [Internet]. Archivos Venezolanos de Farmacología y Terapéutica. 2019 [acceso: 10/01/2023]; 38(4):496-500. Disponible en: https://www.redalyc.org/journal/559/55964256021/55964256021.pdf

23. Nescolarde L, Núñez A, Bogónez P, Lara A, Vaillant G, Morales R, et al. Reference values of the bioimpedance vector components in a Caribbean population [Internet]. e-SPEN Journal. 2013; 8(4):141-4. DOI: 10.1016/j.clnme.2013.04.004

24. De Palo T, Messina G, Edefonti A, Perfumo F, Pisanello L, Peruzzi L, et al. Normal values of the bioelectrical impedance vector in childhood and puberty [Internet]. Nutrition. 2000; 16(6):417-24. DOI: 10.1016/s0899-9007(00)00269-0

25. National Institutes of Health. Bioelectrical impedance analysis in body composition measurement: National Institutes of Health Technology Assessment Conference Statement [Internet]. Am J Clin Nutr. 1996; 64(3):524-32. DOI: 10.1093/ajcn/64.3.524s

26. Alves HJ, Ferreira DF. Proposition of new alternative tests adapted to the traditional T2 test [Internet]. Communications in Statistics-Simulation and Computation. 2022; 51(5):2287-2300. DOI: 10.1080/03610918.2019.1693596

27. Moore SA, Cumming SP, Balletta G, Ramage K, Eisenmann JC, Baxter Jones AD, et al. Exploring the relationship between adolescent biological maduration, physical activity and sedentary behavior: a systematic review and narrative synthesis [Internet]. Annals of Human Biology. 2020; 47(4):365-83. DOI: 10.1080/03014460.2020.1805006

28. Oliveira M, Henrique RS, Queiroz DR, Salvina M, Melo WV, dos Santos MA. Anthropometric variables, propulsive force and biological maturation: a mandatory analysis in young swimmers [Internet]. European Journal of Sport Science. 2021; 21(4):507-14. DOI: 10.1080/17461391.2020.1754468

29. Redondo-del-Río MP, Camina-Martín MA, Marugán-de-Miguelsanz JM, de-Mateo-Silleras B. Bioelectrical impedance vector reference values for assessing body composition in a Spanish child and adolescent population [Internet]. American Journal of Human Biology. 2017; 29(4):e22978. DOI: 10.1002/ajhb.22978

30. Wiech P, Salacinska I, Baczek M, Bazalinski D. The nutritional status of healthy children using bioelectrical impedance and anthropometric measurement [Internet]. Jornal de Pediatria. 2022; 98(2):161-7. DOI: 10.1016/j.jped.2021.05.009

31. Almeida YL, Maia CSC, Barros NE, Moreno LA, Carioca AAF, Loureiro AC. Is bioelectrical impedance vector analysis a good indicator of nutritional status in children and adolescents? [Internet]. Public Health Nutrition. 2021; 24(14):4408-16. DOI: 10.1017/S1368980021002226

32. Watanabe T, Ishida N, Takaoka M, Tsujimoto K, Kondo K, Isoda R, et al. Bioelectrical impedance analysis for perioperative water management in adult cardiovascular valve disease surgery [Internet]. Surgery Today. 2021; 51(6):1061-7. DOI: 10.1007/s00595-020-02184-3

33. Ward LC, Brantlov S. Bioimpedance basics and phase angle fundamentals [Internet]. Reviews in Endocrine and Metabolic Disorders. 2023; 24(3):381-91. DOI: 10.1007/s11154-022-09780-3

34. Sumner JA, Colich NL, Uddin M, Armstrong D, McLaughlin KA. Early experiences of treath, but not deprivation, are associated with accelerated biological aging in children and adolescents [Internet]. Biological Psychiatry. 2019; 85(3):268-78. DOI: 10.1016/j.biopsych.2018.09.008

35. Baxter-Jones AD, Barbour-Tuck EN, Dale D, Sherar LB, Knight CJ, Cumming SP, et al. The role of growth and maturation during adolescence on team-selection and short-term sports participation [Internet]. Annals of Human Biology. 2020; 47(4):316-23. DOI: 10.1080/03014460.2019.1707870

36. Orsso CE, González MC, Maisch MJ, Haqq AM, Prado CM. Using bioelectrical impedance analysis in children and adolescents: pressing issue [Internet]. European Journal of Clinical Nutrition. 2022; 76(5):659-65. DOI: 10.1038/s41430-021-01018-w

37. Abou El Ella SS, Barseem NF, Tawfik MA, Ahmed AF. BMI relationship to the onset of puberty: assessment of growth parameters and sexual maturity changes in Egyptian children and adolescents of both sexes [Internet]. Journal of Pediatric Endocrinology and Metabolism. 2020; 33(1):121-128. DOI: 10.1515/jpem-2019-0119

38. Khan S, Xanthakos SA, Hornung L, Arce-Clachar C, Siegel R, Kalkwarf HJ. Relative accuracy of bioelectrical impedance analysis for assessing body composition in children with severe obesity [Internet]. Journal of pediatric gastroenterology and nutrition. 2020; 70(6):129-35. DOI: 10.1097/MPG.0000000000002666

Published

2024-08-30

How to Cite

1.
Batista Luna T, García Bello JL, Camué Ciria HM, Garzón Carbonell A, Román Montoya A de la C, Lara Lafargue A, et al. Evolution of age-associated bioelectrical parameters in children and adolescents aged 2-16 years. Rev Cubana Med Milit [Internet]. 2024 Aug. 30 [cited 2025 Jan. 11];53(3):e024020603. Available from: https://revmedmilitar.sld.cu/index.php/mil/article/view/20603

Issue

Section

Research Article