Evolution of age-associated bioelectrical parameters in children and adolescents aged 2-16 years
Keywords:
adolescence, bioelectrical impedance, body composition, electrical resistance, growth and develop.Abstract
Introduction: The physiological changes that manifest in children and adolescents during their growth and development have a significant impact on their adult life.Objective: To evaluate the evolution of physiological changes in 2 samples of children and adolescents using bioelectrical impedance vector analysis.
Methods: Two samples of infant-juvenile populations of both sexes were used, a Cuban sample of 1067 individuals and an Italian sample of 1823, from two databases. The nomogram and the linear fit to each sample were performed, based on a mathematical model of the form characterize the trajectory of the data of each sample.
Results: In the Cuban sample, the mean impedance vectors overlap from the 2 age group to the 12 age group. From the age of 13 years, the vectors of both sexes separate. In the Italian sample, these vectors overlap from the age group 2 years to the age group 13 years. From the 14 to 15 age group, the vectors of both sexes are separate. Both samples followed a straight line, decreasing with increasing age.
Conclusions: The changes that occur in the bioelectrical vectors from childhood to adolescence are due to modifications in the stages that lead from childhood to puberty from the physiological point of view.
Downloads
References
2. Adami F, Benedet J, Takahashi LAR, da Silva Lopes A, da Silva Paiva L, de Vasconcelos FAG. Association between pubertal development stages and body adiposity in children and adolescents [Internet]. Health Qual Life Outcomes. 2020; 18(1):1-9. DOI: 10.1186/s12955-020-01342-y
3. de Castro JAC, de Lima TR & Silva DAS. Body composition estimation in children and adolescents by bioelectrical impedance analysis: A systematic review [Internet]. Journal of bodywork and movement therapies. 2018; 22(1):134-146. DOI: 10.3945/an.113.005371
4. Ballarin G, Alicante P, Di Vicenzo O, Scalfi L. Bioelectrical impedance analysis (BIA)-derived phase angle in children and adolescents: a systematic review [Internet]. Journal of Pediatric Gastroenterology and Nutrition. 2022; 75(2):120-30. DOI: 10.1097/MPG.0000000000003488
5. Moonen HPFX, Van Zanten ARH. Bioelectric impedance analysis for body composition measurement and other potential clinical applications in critical illness [Internet]. Current Opinion in Critical Care. 2021; 27(4):344. DOI: 10.1097/MCC.0000000000000840
6. Luengpradidgun L, Chamroonkul N, Sripongpun P, Kaewdech A, Tanutit P, Ina N, et al. Utility of handgrip strength (HGS) and bioelectrical impedance analysis (BIA) in the diagnosis of sarcopenia in cirrhotic patients [Internet]. BMC Gastroenterology. 2022; 22(1):1-8. DOI: 10.1186/s12876-022-02236-7
7. Hioka A, Akazawa N, Okawa N, Nagahiro S. Extracellular water-to-total body water ratio is an essential confounding factor in bioelectrical impedance analysis for sarcopenia diagnosis in women [Internet]. European Geriatric Medicine. 2022; 13(4):789-94. DOI: 10.1007/s41999-022-00652-2
8. Roehrich L, Suendermann S, Just IA, Knierim J, Mulzer J, Mueller M, et al. Safety of bioelectrical impedance analysis in advanced heart failure patients [Internet]. Pacing and Clinical Electrophysiology. 2020; 43(10):1078-85. DOI: 10.1111/pace.14018
9. Kozhevnikova AV, Belyanin OL, Vlasova OL. Experimental Testing of a Method for Objective Registration of the Pain Syndrome [Internet]. Biophysics. 2021; 66(6):1032-6. DOI: 10.1134/S0006350921060075
10. Kechagias D, Chatzipapas C, Karaglani M, Tilkeridis K, Ververidis A, Drosos G. Efficacy of bioelectrical impedance analysis for the evaluation of physical impairment in chronic low back pain. Results from a cohort study [Internet]. Folia Medica. 2021; 63(6):919-27. DOI: 10.3897/folmed.63.e59311
11. Lebiedowska A, Hartman-Petrycka M, Blonska-Fajfrowska B. How reliable is BMI? Bioimpedance analysis of body composition in underweight, normal weight, overweight, and obese women [Internet]. Irish Journal of Medical Science. 2021;1 90(3):993-8. DOI: 10.1007/s11845-020-02403-3
12. Vasold KL, Parks AC, Phelan DM, Pontifex MB, Pivarnik JM. Reliability and validity of commercially available low-cost bioelectrical impedance analysis [Internet]. International Journal of Sport Nutrition and Exercise Metabolism. 2019; 29(4):406-10. DOI: 10.1123/ijsnem.2018-0283
13. Mascherini G, Zappelli E, Leone B, Musumeci G, Totti V, Irurtia A, et al. Bioelectrical impedance vector analysis (BIVA) in renal transplant recipients during an unsupervised physical exercise program [Internet]. The Journal of Sports Medicine and Physical Fitness. 2020; 60(4):594-600. DOI: 10.23736/S0022-4707.19.10181-8
14. Cuevas MDLAE, Durán LXC, Carsi XA, Ortiz AJG, Acevedo SR, Cisneros SL, et al. Agreement between vector analysis and body composition measurements by four types of bioelectrical impedance technology in hemodialysis patients [Internet]. Nutrición Hospitalaria. 2022; 39(5):1047-57. DOI: 10.20960/nh.04005
15. De la Cruz Marcos S, Redondo del Río MP, de Mateo Silleras B. Applications of Bioelectrical Impedance Vector Analysis (BIVA) in the Study of Body Composition in Athletes [Internet]. Applied Sciences. 2021; 11(21):9781. DOI: 10.3390/app11219781
16. Sugizaki CS, Queiroz NP, Silva DM, Freitas AT, Costa NA, Peixoto MR. Comparison of bioelectrical impedance vector analysis (BIVA) to 7-point subjective global assessment for the diagnosis of malnutrition [Internet]. Brazilian Journal of Nephrology. 2021; 44(2):171-8. DOI: 10.1590/2175-8239-JBN-2021-0099
17. Miranda-Alatriste PV, Colín-Ramírez E, Atilano-Carsi X, Cruz Rivera C, Espinosa-Cuevas Á. Estado de hidratación por vectores de impedancia y su asociación con desenlaces clínicos, bioquímicos y mortalidad en pacientes con enfermedad renal crónica [Internet]. Nutrición Hospitalaria. 2022; 39(5):1037-46. DOI: 10.20960/nh.03970
18. Stagi S, Silva AM, Jesus F, Campa F, Cabras S, Earthman CP, et al. Usability of classic and specific bioelectrical impedance vector analysis in measuring body composition of children [Internet]. Clinical Nutrition. 2022; 41(3):673-9. DOI: 10.1016/j.clnu.2022.01.021
19. Luszczki E, Bartosiewicz A, Kuchciak M, Deren K, Oleksy L, Adamska O, et al. Longitudinal analysis of resting energy expenditure and body mass composition in physically active children and adolescents [Internet]. BMC Pediatr. 2022; 22(1):260. DOI: 10.3390/nu11061215
20. Wells JC. Body composition of children with moderate and severe undernutrition and after treatment: a narrative review [Internet]. BMC Medicine. 2019; 17(1):215. DOI: 10.1186/s12916-019-1465-8
21. Tarupi W, Lepage Y, Felix ML, Monnier C, Hauspie R, Roelants M, et al. Referencias de peso, estatura e índice de masa corporal para niñas y niños ecuatorianos de 5 a 19 años de edad [Internet]. Archivos Argentinos de Pediatría. 2020 [acceso: 10/01/2023]; 118(2):117-24. Disponible en: https://www.sap.org.ar/docs/publicaciones/archivosarg/2020/v118n2a08.pdf
22. Uribe MCO, Arce DCO, Navarrete CE. Factores de riesgo en el crecimiento y desarrollo de niños prescolares [Internet]. Archivos Venezolanos de Farmacología y Terapéutica. 2019 [acceso: 10/01/2023]; 38(4):496-500. Disponible en: https://www.redalyc.org/journal/559/55964256021/55964256021.pdf
23. Nescolarde L, Núñez A, Bogónez P, Lara A, Vaillant G, Morales R, et al. Reference values of the bioimpedance vector components in a Caribbean population [Internet]. e-SPEN Journal. 2013; 8(4):141-4. DOI: 10.1016/j.clnme.2013.04.004
24. De Palo T, Messina G, Edefonti A, Perfumo F, Pisanello L, Peruzzi L, et al. Normal values of the bioelectrical impedance vector in childhood and puberty [Internet]. Nutrition. 2000; 16(6):417-24. DOI: 10.1016/s0899-9007(00)00269-0
25. National Institutes of Health. Bioelectrical impedance analysis in body composition measurement: National Institutes of Health Technology Assessment Conference Statement [Internet]. Am J Clin Nutr. 1996; 64(3):524-32. DOI: 10.1093/ajcn/64.3.524s
26. Alves HJ, Ferreira DF. Proposition of new alternative tests adapted to the traditional T2 test [Internet]. Communications in Statistics-Simulation and Computation. 2022; 51(5):2287-2300. DOI: 10.1080/03610918.2019.1693596
27. Moore SA, Cumming SP, Balletta G, Ramage K, Eisenmann JC, Baxter Jones AD, et al. Exploring the relationship between adolescent biological maduration, physical activity and sedentary behavior: a systematic review and narrative synthesis [Internet]. Annals of Human Biology. 2020; 47(4):365-83. DOI: 10.1080/03014460.2020.1805006
28. Oliveira M, Henrique RS, Queiroz DR, Salvina M, Melo WV, dos Santos MA. Anthropometric variables, propulsive force and biological maturation: a mandatory analysis in young swimmers [Internet]. European Journal of Sport Science. 2021; 21(4):507-14. DOI: 10.1080/17461391.2020.1754468
29. Redondo-del-Río MP, Camina-Martín MA, Marugán-de-Miguelsanz JM, de-Mateo-Silleras B. Bioelectrical impedance vector reference values for assessing body composition in a Spanish child and adolescent population [Internet]. American Journal of Human Biology. 2017; 29(4):e22978. DOI: 10.1002/ajhb.22978
30. Wiech P, Salacinska I, Baczek M, Bazalinski D. The nutritional status of healthy children using bioelectrical impedance and anthropometric measurement [Internet]. Jornal de Pediatria. 2022; 98(2):161-7. DOI: 10.1016/j.jped.2021.05.009
31. Almeida YL, Maia CSC, Barros NE, Moreno LA, Carioca AAF, Loureiro AC. Is bioelectrical impedance vector analysis a good indicator of nutritional status in children and adolescents? [Internet]. Public Health Nutrition. 2021; 24(14):4408-16. DOI: 10.1017/S1368980021002226
32. Watanabe T, Ishida N, Takaoka M, Tsujimoto K, Kondo K, Isoda R, et al. Bioelectrical impedance analysis for perioperative water management in adult cardiovascular valve disease surgery [Internet]. Surgery Today. 2021; 51(6):1061-7. DOI: 10.1007/s00595-020-02184-3
33. Ward LC, Brantlov S. Bioimpedance basics and phase angle fundamentals [Internet]. Reviews in Endocrine and Metabolic Disorders. 2023; 24(3):381-91. DOI: 10.1007/s11154-022-09780-3
34. Sumner JA, Colich NL, Uddin M, Armstrong D, McLaughlin KA. Early experiences of treath, but not deprivation, are associated with accelerated biological aging in children and adolescents [Internet]. Biological Psychiatry. 2019; 85(3):268-78. DOI: 10.1016/j.biopsych.2018.09.008
35. Baxter-Jones AD, Barbour-Tuck EN, Dale D, Sherar LB, Knight CJ, Cumming SP, et al. The role of growth and maturation during adolescence on team-selection and short-term sports participation [Internet]. Annals of Human Biology. 2020; 47(4):316-23. DOI: 10.1080/03014460.2019.1707870
36. Orsso CE, González MC, Maisch MJ, Haqq AM, Prado CM. Using bioelectrical impedance analysis in children and adolescents: pressing issue [Internet]. European Journal of Clinical Nutrition. 2022; 76(5):659-65. DOI: 10.1038/s41430-021-01018-w
37. Abou El Ella SS, Barseem NF, Tawfik MA, Ahmed AF. BMI relationship to the onset of puberty: assessment of growth parameters and sexual maturity changes in Egyptian children and adolescents of both sexes [Internet]. Journal of Pediatric Endocrinology and Metabolism. 2020; 33(1):121-128. DOI: 10.1515/jpem-2019-0119
38. Khan S, Xanthakos SA, Hornung L, Arce-Clachar C, Siegel R, Kalkwarf HJ. Relative accuracy of bioelectrical impedance analysis for assessing body composition in children with severe obesity [Internet]. Journal of pediatric gastroenterology and nutrition. 2020; 70(6):129-35. DOI: 10.1097/MPG.0000000000002666
Published
How to Cite
Issue
Section
License
Authors who have publications with this Journal accept the following terms:
- The authors will retain their copyright and guarantee the Journal the right of first publication of their work, which will simultaneously be subject to the Creative Commons Attribution License. The content presented here can be shared, copied and redistributed in any medium or format; Can be adapted, remixed, transformed or created from the material, using the following terms: Attribution (giving appropriate credit to the work, providing a link to the license, and indicating if changes have been made); non-commercial (you cannot use the material for commercial purposes) and share-alike (if you remix, transform or create new material from this work, you can distribute your contribution as long as you use the same license as the original work).
- The authors may adopt other non-exclusive license agreements for the distribution of the published version of the work (for example: depositing it in an institutional electronic archive or publishing it in a monographic volume) as long as the initial publication in this Journal is indicated.
- Authors are allowed and recommended to disseminate their work through the Internet (e.g., in institutional electronic archives or on their website) before and during the submission process, which can produce interesting exchanges and increase citations. of the published work.