Ocular biometric indices in Vietnamese 46 to 65 years of age

Authors

Keywords:

ocular axial length, anterior chamber depth, central corneal thickness

Abstract

Introduction: Ocular axial length, anterior chamber depth and central corneal thickness are three important ocular biometric indices. These measurements are useful to show changes in the Vietnamese population with presbyopia.
Objectives: To determine the ocular biometric indices, ocular axial length, anterior chamber depth and central corneal thickness, in Vietnamese population and evaluate the correlation between these indices.
Methods: A cross-sectional study was carried out in a Vietnamese population, aged 46 to 65 years. Data on ocular axial length, anterior chamber depth and central corneal thickness were collected. The Student's t test and ANOVA were used to compare the means of the indices, grouped by age and sex. The relationship between the ocular biometric indices was tested using Pearson's correlation, with a significance level of p <0.05.
Results: 390 eyes of 195 people were analyzed. The mean length of the ocular axis was 23.13 ± 0.66 mm, the depth of the anterior chamber, 3.15 ± 0.36 mm, and the central corneal thickness, 529.15 ± 30.57 µm. The three biometric indices decreased with age and were higher in men (p <0.05). The length of the ocular axis had a positive relationship with the depth of the anterior chamber (r = 0.411 and p <0.001) and the central corneal thickness (r = 0.141 and p <0.001). There was no relationship between anterior chamber depth and central corneal thickness (r = 0.039 and p = 0.44).
Conclusion: Three ocular biometric indices decreased with age and were higher in men. The length of the ocular axis was related to the depth of the anterior chamber and the thickness of the central cornea.

Downloads

Download data is not yet available.

Author Biographies

Hien Thi Thu Nguyen, Vietnam National Institute of Ophthalmology

Refraction department

Khoa Xuan Ngo, Hanoi Medical University

Anatomy department

Luan Thanh Nguyen, Haiduong Medical Technical University

Anatomy department

Luong Van Hoang, Vietnam Military Medical University

Prof.Ph.D., Vice Director of Vietnam Military Medical University. The President of Vietnam Morphology Association.

References

1. Young TL. Complex Trait Genetics of Refractive Error. Arch Ophthalmol. 2007 [acceso: 02/03/2021]; 125(1): 38-48. Disponible en: https://jamanetwork.com/journals/jamaophthalmology/article-abstract/419014

2. Connell BJ, Kane JX. Comparison of the Kane formula with existing formulas for intraocular lens power selection. BMJ Open Ophthalmology. 2019 [acceso: 02/02/2021]; 4: e000251. Disponible en: https://bmjophth.bmj.com/content/bmjophth/4/1/e000251.full.pdf

3. He M, Huang W, Li Y, Zheng Y, Yin Q, Foster PJ. Refractive error and biometry in older Chinese adults: the Liwan eye study. Investigative ophthalmology & visual science. 2009 [acceso: 02/03/2021]; 50(11): 5130-6. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2164735

4. Shufelt C, Fraser-Bell S, Ying-Lai M, Torres M, Varma R. Refractive error, ocular biometry, and lens opalescence in an adult population: the Los Angeles Latino Eye Study. Investigative ophthalmology & visual science. 2005 [acceso: 02/04/2021]; 46(12): 4450-60. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2124301

5. Huang J, Lu W, Savini G, Chen H, Wang C, Yu X, et al. Comparison between a New Optical Biometry Device and an Anterior Segment Optical Coherence Tomographer for Measuring Central Corneal Thickness and Anterior Chamber Depth. Journal of Ophthalmology. 2016 [acceso: 02/05/2021]; 2016: 6347236. Disponible en: https://downloads.hindawi.com/journals/joph/2016/6347236.pdf

6. Khalid M, Ameen SS, Ayub N, Mehboob MA. Effects of anterior chamber depth and axial length on corneal endothelial cell density after phacoemulsification. Pak J Med Sci. 2019 [acceso: 02/05/2021]; 35(1):200-4. Disponible en: https://applications.emro.who.int/imemrf/Pak_J_Med_Sci/Pak_J_Med_Sci_2019_-35_1_200_204.pdf

7. Kaup S, Shivalli S, Divyalakshmi KS. Central corneal thickness changes in bevel-up versus bevel-down phacoemulsification cataract surgery: study protocol for randomised, triple-blind, parallel group trial. BMJ Open 2016 [acceso:02/03/2021]; 6: e012024. Disponible en: https://bmjopen.bmj.com/content/bmjopen/6/9/e012024.full.pdf

8. Hashemi H, Khabazkhoob M, Miraftab M, Emamian MH, Shariati M, Abdolahinia T, et al. The distribution of axial length, anterior chamber depth, lens thickness, and vitreous chamber depth in an adult population of Shahroud, Iran. BMC ophthalmology. 2012 [acceso: 02/06/2021]; 12(1):50. Disponible en: https://bmcophthalmol.biomedcentral.com/track/pdf/10.1186/1471-2415-12-50.pdf

9. Zocher MT, Rozema JJ, Oertel N, Dawczynski J, Wiedemann P, Rauscher FG, et al. Biometry and visual function of a healthy cohort in Leipzig, Germany. BMC ophthalmology. 2016 [acceso: 01/30/2021]; 16(1): 79. Disponible en: https://pubmed.ncbi.nlm.nih.gov/27268271

10. Warrier S, Wu HM, Newland HS, Muecke J, Selva D, Aung T, et al. Ocular biometry and determinants of refractive error in rural Myanmar: the Meiktila Eye Study. British Journal of Ophthalmology. 2008 [acceso: 02/05/2021]; 92(12): 1591-4. Disponible en: https://pubmed.ncbi.nlm.nih.gov/18927224

11. Grace MR, Wang M, Jiang X. Ocular Determinants of Refractive Error and Its Age- and Sex-Related Variations in the Chinese American Eye Study. JAMA Ophthalmol. 2017 [acceso:02/04/2021]; 135(7):724-732. Disponible en: https://jamanetwork.com/journals/jamaophthalmology/fullarticle/2627938

12. Gessesse GW, Debela AS, Anbesse DH. Ocular Biometry and Their Correlations with Ocular and Anthropometric Measurements Among Ethiopian Adults. Clinical Ophthalmology. 2020 [acceso: 02/03/2021]; 14: 3363-3369. Disponible en: https://www.dovepress.com/getfile.php?fileID=62637

13. Lee KE, Klein BEK, Klein R, Quandt Z, Wong TY. Association of age, stature, and education with ocular dimensions in an older white population. Archives of Ophthalmology. 2009 [acceso: 01/30/2021]; 127(1): 88-93. Disponible en: https://pubmed.ncbi.nlm.nih.gov/19139346

14. Wu HM, Gupta A, Newland HS, Selva D, Aung T, Casson RJ. Association between stature, ocular biometry and refraction in an adult population in rural Myanmar: the Meiktila eye study. Clinical & experimental ophthalmology. 2007 [acceso: 02/03/2021]; 35(9): 834-9. Disponible en: https://pubmed.ncbi.nlm.nih.gov/18173412

15. Praveen MR, Vasavada AR, Shah SK, Shah CB, Patel UP, Dixit NV, et al. Lens thickness of Indian eyes: impact of isolated lens opacity, age, axial length, and influence on anterior chamber depth. Eye. 2009 [acceso: 02/05/2021]; 23(7): 1542. Disponible en: https://pubmed.ncbi.nlm.nih.gov/18949009

16. Kadhim YJ, Farhood QK. Central corneal thickness of Iraqi population in relation to age, gender, refractive errors, and corneal curvature: a hospital-based cross-sectional study. Clinical Ophthalmology (Auckland, NZ). 2016 [acceso: 02/04/2021]; 10: 2369-76. Disponible en: https://www.dovepress.com/getfile.php?fileID=33774

17. Gudmundsdottir E, Arnarsson A, Jonasson F. Five-year refractive changes in an adult population: Reykjavik Eye Study. Ophthalmology. 2005 [acceso: 02/06/2021]; 112(4): 672-7. Disponible en: https://pubmed.ncbi.nlm.nih.gov/15808261

18. Hahn S, Azen S, Ying-Lai M, Varma V, Los Angeles Latino Eye Study Group. Central corneal thickness in Latinos. Investigative ophthalmology & visual science. 2003 [acceso: 02/05/2021]; 44(4): 1508-12. Disponible en: https://pubmed.ncbi.nlm.nih.gov/12657586

19. Chen MJ, Liu UT, Tsai CC, Chen YC, Chou CK, Lee SM. Relationship between central corneal thickness, refractive error, corneal curvature, anterior chamber depth and axial length. Journal of the Chinese Medical Association. 2009 [acceso: 02/05/2021]; 72(3): 133-7. Disponible en: https://www.sciencedirect.com/science/article/pii/S1726490109700383

20. Kho Tàng Kiến Thức Y Học. Khảo sát tình trạng glôcôm trên những mắt có lõm đĩa thị nghi ngờ bệnh glôcôm tại Bệnh viện Mắt Trung Ương. Luận Văn Y Học; 2018. [acceso: 02/05/2021]. Disponible en: https://luanvanyhoc.com/khao-sat-tinh-trang-glocom-tren-nhung-mat-co-lom-dia-thi-nghi-ngo-benh-glocom-tai-benh-vien-mat-trung-uong

21. Aprioku IN and Ejimadu CS. Analysis of Ocular Axial Length and Anterior Chamber Depth in Port Harcourt, Nigeria. World Journal of Ophthalmology & Vision Research. 2019 [acceso: 02/05/2021]; 2(2): 1-7. Disponible en: https://irispublishers.com/wjovr/pdf/WJOVR.MS.ID.000535.pdf

22. Sedaghat MR, Azimi A, Arasteh P, Tehranian N, Bamdad S. The Relationship between Anterior Chamber Depth, Axial Length and Intraocular Lens Power among Candidates for Cataract Surgery. Electronic Physician. 2016 [acceso:02/04/2021]; 8(10): 3127-31. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5133039/pdf/epj-08-3127.pdf

23. Hwang YH, Kim HK, Sohn YH. Central Corneal Thickness in a Korean Population: The Namil Study Central Corneal Thickness in a Korean Population. Investigative ophthalmology & visual science. 2012 [acceso: 02/05/2021]; 53(11): 6851-5. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2127129

Published

2021-07-30

How to Cite

1.
Nguyen HTT, Ngo KX, Nguyen LT, Hoang LV. Ocular biometric indices in Vietnamese 46 to 65 years of age. Rev Cubana Med Milit [Internet]. 2021 Jul. 30 [cited 2025 Apr. 19];50(3):e02101418. Available from: https://revmedmilitar.sld.cu/index.php/mil/article/view/1418

Issue

Section

Brief Communication