In vitro biological activity of aqueous and alcoholic extracts from Andean tubers

Authors

Keywords:

anticoagulants, antibacterials, antifungals, vegetable extracts, hemagglutination, plant tubers.

Abstract

Introduction: Ancestral medicine has used plants with medicinal qualities to prevent and treat diseases, even though this type of research has increased, studies with Andean tubers are scarce.
Objective: To determine the biological activity of aqueous and ethanolic extracts of the Andean tubers Tropaeolum tuberosum (mashua) and Ullucus tuberosus (melloco).
Methods: The research was experimental and was developed in vitro. The sample consisted of 2 Andean tubers used in ancestral medicine. Extraction techniques were applied in aqueous and ethanolic medium. The extracts were evaluated for hemagglutinating, anticoagulant and antimicrobial activity with ATCC strains.
Results: Hemagglutinating activity was demonstrated in the aqueous extract of T. tuberosum on A erythrocyte. All aqueous extracts showed anticoagulant activity, Tropaeolum tuberosum inhibited blood coagulation activity (intrinsic pathway) with an aPTT> 300 sec. Both aqueous and ethanolic extracts exhibited antimicrobial activity against ATCC strains, Tropaeolum tuberosum inhibited the growth of Staphylococcus aureus 25923 with halos of 17 and 22 mm and Ullucus tuberosus (white) with halos of 10 and 30 mm, respectively. The aqueous extracts of Tropaeolum tuberosum and Ullucus tuberosus (red) inhibited the growth of Candida tropicalis 66029 with halos of 27 and 12 mm, respectively.
Conclusions: Once the biological activity was determined, it was evident that the Andean tubers studied agglutinated human erythrocytes, specifically group A erythrocytes, as well as the ability to inhibit plasma coagulation proteins and inhibit the bacterial and fungal growth of ATTC strains.

Downloads

Download data is not yet available.

Author Biographies

Pablo Djabayan Djibeyan, Universidad Nacional de Chimborazo

Facultad de Ciencias de la Salud, Carrera de Medicina, Investigador Docente

Mélany Germania Cantos Jiménez, Ministerio de Salud Pública

Distrito 06D04 Colta-Guamote, Provincia de Chimborazo, Médico

María Eugenia Lucena de Ustariz, Universidad Nacional de Chimborazo

Facultad de Ciencias de la Salud, Carrera de Laboratorio Clínico, Investigador Docente

Marco Vinicio Caiza Ruíz, Universidad Nacional de Chimborazo

Facultad de Ciencias de la Salud, Carrera de Terapia Física, Investigador Docente

Francisco Javier Ustariz Fajardo, Universidad Nacional de Chimborazo

Facultad de Ciencias de la Salud, Carrera de Terapia Física, Investigador Docente

References

1. OMS-Organización Mundial de la Salud. Estrategia de la OMS sobre medicina tradicional. 2014-2023. [Internet]. Ginebra: Biblioteca de la OMS; 2013. [acceso: 25/05/2023]. Disponible en: https://iris.who.int/bitstream/handle/10665/95008/9789243506098_spa.pdf?sequence=1

2. OPS/OMS Organización Panamericana de la Salud. Resistencia a los antimicrobianos. [Internet]. Washington, DC: Programas e iniciativas; 2019. [acceso: 25/05/2023]. Disponible en: https://www.paho.org/es/temas/resistencia-antimicrobianos

3. OMS-Organización Mundial de la Salud. Resistencia a los antibióticos. [Internet]. Ginebra: Centro de Prensa; 2020. [acceso: 25/05/2023]. Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/antibiotic-resistance

4. OPS/OMS-Organización Panamericana de la Salud. La resistencia antimicrobiana pone en riesgo la salud. [Internet]. Washington, DC: Noticias; 2021. [acceso: 25/05/2023]. Disponible en: https://www.paho.org/es/noticias/3-3-2021-resistencia-antimicrobiana-pone-riesgo-salud-mundial

5. OMS-Organización Mundial de la Salud. Global antimicrobial resistance and use surveillance system (GLASS) report 2022. [Internet]. Ginebra: Reporte; 2022. [acceso: 16/10/2023]. Disponible en: https://iris.who.int/bitstream/handle/10665/364996/9789240062702-eng.pdf?sequence=1

6. Arteaga-Cano D, Chacón-Calvo L, Samamé-Herrera V, Valverde-Cerna D, Paucar-Menacho LM. Mashua (Tropaeolum tuberosum): Composición nutricional, características químicas, compuestos bioactivos y propiedades beneficiosas para la salud. Agroind sci. 2022;2(1):95-101. DOI: 10.17268/agroind.sci.2022.01.12

7. Apaza Ticona L, Tena Pérez V, Bermejo Benito P. Local/traditional uses, secondary metabolites and biological activities of Mashua ( Tropaeolum tuberosum Ruíz & Pavón). J Ethnopharmacol. 2020;247:1-19. DOI: 10.1016/j.jep.2019.112152

8. Newman DJ, Cragg GM. Natural Products as Sources of New Drugs from 1981 to 2014. J Nat Prod. 2016;79(3):629-661. DOI: 10.1021/acs.jnatprod.5b01055

9. King SR, Gershoff SN. Nutritional evaluation of three underexploited Andean tubers: Oxalis tuberosa (Oxalidaceae), Ullucus tuberosus (Basellaceae), and Tropaeolum tuberosum (Tropaeolaceae). Economic Botany. 1987;41:503-511. [acceso: 25/05/2023]. Disponible en: https://link.springer.com/article/10.1007/BF02908144

10. Djabayan-Djibeyan P, Carpenter B, Medina-Ramírez G, Andueza-Leal F, León-Leal A, Djabayan-Russo A, et al. Cold Steeping Infusion, a Novel Lectin Extraction Technique for the Isolation, Purification and Partial Characterization of Lectins from the Green Venezuelan Marine Alga Caulerpa serrulata . Nat Prod Commun. 2018;13(12): 1715-1719. DOI: 10.1177/1934578X1801301233

11. Villarreal-Rivas S, Rojas-Fermin L, Lárez R, Torres M, Díaz C, Lucena de Ustáriz M, Carmona J. Caracterización química y actividad antimicrobiana de los componentes volátiles de Eucalyptus de dos especies de Venezuela. Rev Colomb Cienc Quim Farm. 2023;52(1):91-106 DOI: 10.15446/rcciquifa.v52n1.109361

12. Boorman KE, Dodd BE, Lincoln PJ. Blood Group Serology-Theory, Techniques, Practical Applications. 5th. Ed. London: Churchill Levingstone; 1977.

13. Adcock DM, Hoefner DM, Kottke-Marchant K, Marlar RA, Szamosi DI, Warunek DJ. Collection, Transport and Processing of Blood Specimens for Testing Plasma-Based Coagulation and Molecular Haemostasis Assays; Approved Guideline. 5 th ed. USA: Clinical and Laboratory Standards Institute (CLSI) Document H21-A5; 2008 [acceso:21/06/2023]. Disponible en: https://clsi.org/standards/products/hematology/documents/h21/

14. Bauer AW, Kirby WMM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. AJCP. 1966;45(4):493-496. DOI: 10.1093/ajcp/45.4_ts.493

15. Lewis-II JS, Weinstein MP, Bobenchik AM, Campeau S, Cullen SK, Dingle T, et al. Performance Standards for Antimicrobial Susceptibility Testing, 33 th ed. USA: Clinical and Laboratory Standards Institute (CLSI) supplement M100 Microbiology; 2023 [acceso:21/06/2023]. Disponible en: https://clsi.org/standards/products/microbiology/documents/m100/

16. Aguas-Salazar DA, Djabayan-Djibeyan P. Acción hemoaglutinante, anticoagulante y antimicrobiana obtenidas de los tubérculos andinos; [Tesis de Pregrado] Riobamba: Universidad Nacional de Chimborazo; 2019 [acceso: 21/06/2023]. Disponible en: http://dspace.unach.edu.ec/handle/51000/9910

17. Silva-Guadalupe JM, Medina-Ramírez GE. Evaluación de la actividad antibacteriana y hemoaglutinante de los extractos de Solanum phureja , Tropaeolum tuberosum, Oxalis tuberosa y Ullucus tuberosus ; [Tesis de Pregrado] Riobamba: Escuela Superior Politécnica de Chimborazo; 2018. [acceso: 21/06/2023]. Disponible en: http://dspace.espoch.edu.ec/handle/123456789/8833

18. Djabayan-Djibeyan P, González-Ramírez LC, Lucena de Ustariz ME, Valarezo-García C. Aislamiento y actividad biológica de lectinas obtenidas de semillas de frutas, granos y tubérculos de plantas andinas. Inf Tecnol. 2022;33(2):21-36. DOI: 10.4067/s0718-07642022000200021

19. Cheung RCF, Wong JH, Ng TB, Naude R, Rolka K, Tse R, et al. Tuber Lectins with Potentially Exploitable Bioactivities. Curr Med Chem. 2018;25(42):5986-6001. DOI: 10.2174/0929867325666180517095308

20. Chang S, Yang Z, Han N, Li, Z, Yin J. The antithrombotic, anticoagulant activity and toxicity research of ambinine, an alkaloid from the tuber of Corydalis ambigua var. amurensis. RTP. 2018; 95:175-181. DOI: 10.1016/j.yrtph.2018.03.004

21. Mejía-Lotero FM, Salcedo-Gil JE, Vargas-Londoño S, Serna-Jiménez JA, Torres- Valenzuela LS. Capacidad antioxidante y antimicrobiana de tubérculos andinos ( Tropaeolum tuberosum y Ullucus tuberosus). Revista U.D.C.A. 2018; 21(2):449-456. DOI: 10.31910/rudca.v21.n2.2018.1083

22. Silva-Correa CR, Pazo-Medina GI, Villarreal-La Torre VE, Calderón-Peña AA, Aspajo-Villalaz CL, Cruzado-Razco JL, et al. Wound healing activity of Tropaeolum tuberosum-based topical formulations in mice. Vet World. 2022;15(2):390-396. DOI: 10.14202/vetworld.2022.390-396

23. Apaza Ticona L, Tena Pérez V, Bermejo Benito P. Local/traditional uses, secondary metabolites and biological activities of Mashua ( Tropaeolum tuberosum Ruíz & Pavón). J Ethnopharmacol. 2020;247:1-19. DOI: 10.1016/j.jep.2019.112152

24. Apaza Ticona L, Rumbero Sánchez Á, Orozco Gonzáles Ó, Ortega Doménech M. Antimicrobial compounds isolated from Tropaeolum tuberosum. Nat Prod Res. 2020;35(22):4698-4702. DOI: 10.1080/14786419.2019.1710700

25. Lim TK. Tropaeolum tuberosum. En: Edible Medicinal and Non-Medicinal Plants. Springer, Cham. 2016 [acceso: 28/06/2023]. Disponible en: https://link.springer.com/chapter/10.1007/978-3-319-26065-5_3

26. Morillo AC, Morillo Y, Tovar YL. Caracterización molecular de cubios (Tropaeolum tuberosum Ruíz y Pavón) en el departamento de Boyacá. Rev Cienc Agr. 2016;33(2):32-42. DOI: 10.22267/rcia.163302.50

Published

2024-02-19

How to Cite

1.
Djabayan Djibeyan P, Cantos Jiménez MG, Lucena de Ustariz ME, Caiza Ruíz MV, Ustariz Fajardo FJ. In vitro biological activity of aqueous and alcoholic extracts from Andean tubers. Rev Cubana Med Milit [Internet]. 2024 Feb. 19 [cited 2025 Apr. 3];53(1):e024017246. Available from: https://revmedmilitar.sld.cu/index.php/mil/article/view/17246

Issue

Section

Research Article