Effect of autologous platelet-rich plasma treatment on patients with thin endometrium
Keywords:
frozen embryo transfer, platelet-rich plasma, thin endometrium, endometrium thickness.Abstract
Introduction: The success of frozen embryo transfer cycles depends on a delicate interaction between embryo quality and endometrium. Low pregnancy rates are associated with a thin endometrium.Objective: To evaluate the effect of autologous platelet-rich plasma treatment on patients with thin endometrium.
Methods: In 34 patients with thin endometrium (< 7 mm), canceled in the previous frozen embryo transfer cycles, autologous platelet-rich plasma was prepared, from autologous peripheral vein blood; intrauterine infusion was given during hormone replacement therapy in frozen embryo transfer cycles. Frozen embryo transfer was performed when the endometrium thickness reached ≥ 7mm.
Results: Six patients canceled the embryo transfer cycle due to endometrium thickness did not reach 7 mm; 28 patients got endometrial thickness ≥ 7 mm and performed frozen embryo transfer. The endometrial thickness was 7.5 ± 0.8 mm, which was significantly thicker than in the previous cycles (5.6 ± 0.79 mm) with p< 0.002, the implantation rate was 23.07 %, and the clinical pregnancy rate was 12/28 (42.8 %).
Conclusion: Autologous platelet-rich plasma improves the endometrial thickness and the pregnancy rate outcomes in women with thin endometrium.
Downloads
References
2. Mouhayar Y, Sharara FI. Modern management of thin lining. Middle East Fertility Society Journal. 2017;22(1):1-12. DOI: 10.1016/j.mefs.2016.09.001
3. Patel AN, Park E, Kuzman M, Benetti F, Silva FJ, Allickson JG. Multipotent menstrual blood stromal stem cells: isolation, characterization, and differentiation. Cell transplantation. 2008; 17(3): 303-11. DOI: 10.3727/096368908784153922
4. Richter KS, Bugge KR, Bromer JG, Levy MJ. Relationship between endometrial thickness and embryo implantation, based on 1,294 cycles of in vitro fertilization with transfer of two blastocyst-stage embryos. Fertility and sterility. 2007; 87(1): 53-9. DOI: 10.1016/j.fertnstert.2006.05.064
5. Kasius A, Smit JG, Torrance HL, Eijkemans MJ, Mol BW, Opmeer BC, et al. Endometrial thickness and pregnancy rates after IVF: a systematic review and meta-analysis. Hum Reprod Update. 2014; 20(4): 530-41. DOI: 10.1093/humupd/dmu011
6. Check JH, Dietterich C, Check ML, Katz Y. Successful delivery despite conception with a maximal endometrial thickness of 4 mm. Clin Exp Obstet Gynecol. 2003; 30(2-3): 93-4. [access: 11/04/2021]. Available in: https://www.imrpress.com/journal/CEOG/30/2-3/pii/2003021
7. Dix E, Check JH. Successful pregnancies following embryo transfer despite very thin late proliferative endometrium. Clin Exp Obstet Gynecol. 2010; 37(1): 15-6. [access: 09/05/2021]. Available in: https://www.imrpress.com/journal/CEOG/37/1/pii/1630629613826-507173421/pdf
8. Kumbak B, Erden HF, Tosun S, Akbas H, Ulug U, Bahceci M. Outcome of assisted reproduction treatment in patients with endometrial thickness less than 7 mm. Reprod Biomed Online. 2009; 18(1): 79-84. DOI: 10.1016/s1472-6483(10)60428-2
9. El-Toukhy T, Coomarasamy A, Khairy M, Sunkara K, Seed P, Khalaf Y, et al. The relationship between endometrial thickness and outcome of medicated frozen embryo replacement cycles. Fertility and sterility. 2008; 89(4): 832-9. DOI: 10.1016/j.fertnstert.2007.04.031
10. Chen MJ, Yang JH, Peng FH, Chen SU, Ho HN, Yang YS. Extended estrogen administration for women with thin endometrium in frozen-thawed in-vitro fertilization programs. Journal of Assisted Reproduction and Genetics. 2006; 23(7-8): 337-42. DOI: 10.1007/s10815-006-9053-1
11. Khairy M, Banerjee K, El-Toukhy T, Coomarasamy A, Khalaf Y. Aspirin in women undergoing in vitro fertilization treatment: a systematic review and meta-analysis. Fertility and sterility. 2007; 88(4): 822-31. DOI: 10.1016/j.fertnstert.2006.12.080
12. Gutarra-Vilchez RB, Bonfill Cosp X, Glujovsky D, Viteri-Garcia A, Runzer-Colmenares FM, Martinez-Zapata MJ. Vasodilators for women undergoing fertility treatment. Cochrane Database Syst Rev. 2018; 10: CD010001. DOI: 10.1002/14651858.CD010001.pub3
13. Takasaki A, Tamura H, Miwa I, Taketani T, Shimamura K, Sugino N. Endometrial growth and uterine blood flow: a pilot study for improving endometrial thickness in the patients with a thin endometrium. Fertility and sterility. 2010; 93(6):1851-8. DOI: 10.1016/j.fertnstert.2008.12.062
14. Miralaei S, Ashrafi M, Arabipoor A, Zolfaghari Z, Taghvaei S. The incidence rate of unresponsive thin endometrium in frozen embryo transfer cycles: A case-series of therapy with granulocyte colony stimulating factor. Int J Reprod Biomed. 2019; 17(12): 923-8. DOI: 10.18502/ijrm.v17i12.5797
15. Bodombossou-Djobo MM, Zheng C, Chen S, Yang D. Neuromuscular electrical stimulation and biofeedback therapy may improve endometrial growth for patients with thin endometrium during frozen-thawed embryo transfer: a preliminary report. Reprod Biol Endocrinol. 2011; 9:122. DOI: 10.1186/1477-7827-9-122
16. Azizi R, Aghebati-Maleki L, Nouri M, Marofi F, Negargar S, Yousefi M. Stem cell therapy in Asherman syndrome and thin endometrium: Stem cell- based therapy. Biomed Pharmacother. 2018; 102: 333-43. DOI: 10.1016/j.biopha.2018.03.091
17. Alsousou J, Thompson M, Hulley P, Noble A, Willett K. The biology of platelet-rich plasma and its application in trauma and orthopaedic surgery: a review of the literature. The Journal of Bone and Joint Surgery. 2009; 91(8): 987-96. DOI: 10.1302/0301-620x.91b8.22546
18. Malahias MA, Chytas D, Babis GC, Nikolaou VS. Platelet-rich plasma guided injections: clinical application in peripheral neuropathies. Front Surg. 2014; 1:41. DOI: 10.3389/fsurg.2014.00041
19. Gato-Calvo L, Magalhaes J, Ruiz-Romero C, Blanco FJ, Burguera EF. Platelet-rich plasma in osteoarthritis treatment: review of current evidence. Ther Adv Chronic Dis. 2019; 10: 2040622319825567. DOI: 10.1177/2040622319825567
20. Samadi P, Sheykhhasan M, Khoshinani HM. The Use of Platelet-Rich Plasma in Aesthetic and Regenerative Medicine: A Comprehensive Review. Aesthetic Plast Surg. 2019; 43(3): 803-14. DOI: 10.1007/s00266-018-1293-9
21. Yuan T, Guo SC, Han P, Zhang CQ, Zeng BF. Applications of leukocyte- and platelet-rich plasma (L-PRP) in trauma surgery. Curr Pharm Biotechnol. 2012; 13(7): 1173-84. DOI: 10.2174/138920112800624445
22. Alio JL, Arnalich-Montiel F, Rodriguez AE. The role of "eye platelet rich plasma" (E-PRP) for wound healing in ophthalmology. Curr Pharm Biotechnol. 2012; 13(7): 1257-65. DOI: 10.2174/138920112800624355
23. Chicharro-Alcantara D, Rubio-Zaragoza M, Damia-Gimenez E, Carrillo-Poveda JM, Cuervo-Serrato B, Pelaez-Gorrea P, et al. Platelet Rich Plasma: New Insights for Cutaneous Wound Healing Management. J Funct Biomater. 2018; 9(1): [aprox. 20 p.]. DOI: 10.3390/jfb9010010
24. Mahajan N, Sharma S. The endometrium in assisted reproductive technology: How thin is thin? J Hum Reprod Sci. 2016; 9(1): 3-8. DOI: 10.4103/0974-1208.178632
25. Zadehmodarres S, Salehpour S, Saharkhiz N, Nazari L. Treatment of thin endometrium with autologous platelet-rich plasma: a pilot study. JBRA Assist Reprod. 2017; 21(1): 54-6. DOI: 10.5935/1518-0557.20170013
26. Eftekhar M, Neghab N, Naghshineh E, Khani P. Can autologous platelet rich plasma expand endometrial thickness and improve pregnancy rate during frozen-thawed embryo transfer cycle? A randomized clinical trial. Taiwan J Obstet Gynecol. 2018; 57(6): 810-3. DOI: 10.1016/j.tjog.2018.10.007
27. Chang Y, Li J, Chen Y, Wei L, Yang X, Shi Y, et al. Autologous platelet-rich plasma promotes endometrial growth and improves pregnancy outcome during in vitro fertilization. Int J Clin Exp Med. 2015; 8(1): 1286-90. [access: 07/05/2021]. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4358582/pdf/ijcem0008-1286.pdf
28. Kim H, Shin JE, Koo HS, Kwon H, Choi DH, Kim JH. Effect of Autologous Platelet-Rich Plasma Treatment on Refractory Thin Endometrium During the Frozen Embryo Transfer Cycle: A Pilot Study. Front Endocrinol (Lausanne). 2019; 10: 61. DOI: 10.3389/fendo.2019.00061
Published
How to Cite
Issue
Section
License
Authors who have publications with this Journal accept the following terms:
- The authors will retain their copyright and guarantee the Journal the right of first publication of their work, which will simultaneously be subject to the Creative Commons Attribution License. The content presented here can be shared, copied and redistributed in any medium or format; Can be adapted, remixed, transformed or created from the material, using the following terms: Attribution (giving appropriate credit to the work, providing a link to the license, and indicating if changes have been made); non-commercial (you cannot use the material for commercial purposes) and share-alike (if you remix, transform or create new material from this work, you can distribute your contribution as long as you use the same license as the original work).
- The authors may adopt other non-exclusive license agreements for the distribution of the published version of the work (for example: depositing it in an institutional electronic archive or publishing it in a monographic volume) as long as the initial publication in this Journal is indicated.
- Authors are allowed and recommended to disseminate their work through the Internet (e.g., in institutional electronic archives or on their website) before and during the submission process, which can produce interesting exchanges and increase citations. of the published work.