Assessment of arsenic contamination of milk and dairy products
Keywords:
arsenic, contamination, milk products, dairy products.Abstract
Introduction: Milk and dairy products are nutritious and can play a significant role in a healthy diet. The safety of milk decreases with increasing concentration of arsenic. The Maximum Residue Limits of arsenic is 500 parts per billion (ppb).Objectives: To evaluate the status of arsenic contamination of milk and dairy products produced and processed in some provinces and cities of Vietnam.
Methods: A total of 367 samples were tested. Samples were digested before analysis to remove organic compounds, and the total arsenic content determined by atomic absorption spectrophotometry.
Results: The average concentrations of total arsenic in liquid milk were 139.32 ppb; in yogurt, 169.81 ppb; in cheese, 221.38 ppb; in milk cake, 232.80 ppb; and in milk powder, 35.43 ppb, respectively.
Conclusion: The arsenic concentrations in some samples are higher than the maximum permitted levels according to national regulations.
Downloads
References
2. Vietnam Ministry of Health. QCVN 8-2:2011/BYT, National technical regulation on limits of heavy metal contamination in food. Hanoi; 2011. [access: 13/01/2011]. Available from: http://www.fsi.org.vn/pic/files/qcvn-8-2_2011-byt-gioi-han-o-nhiem-kim-loai-nang.pdf
3. Hameed A, Akhtara S, Amjada A, Naeema I, Tariqa M. Comparative assessment of arsenic contamination in raw milk, infant formulas and breast milk. Journal of Dairy & Veterinary Sciences. 2019 [access: 10/07/2019]; 13(1): 555851. Available from: https://juniperpublishers.com/jdvs/pdf/JDVS.MS.ID.555851.pdf
4. Motaghi M, Ziarati P. Adsorptive Removal of Cadmium and Lead from Oryza Sativa Rice by Banana Peel as Bio-Sorbent. Biomed Pharmacol J. 2016 [access: 13/06/2016]; 9(2):739-49. Available from: https://biomedpharmajournal.org/vol9no2/adsorptive-removal-of-cadmium-and-lead-from-oryza-sativa-rice-by-banana-peel-as-bio-sorbent/
5. Arianejad M, Alizadeh M, Bahrami A, Arefhoseini SR. Levels of Some Heavy Metals in Raw Cow's Milk from Selected Milk Production Sites in Iran: Is There any Health Concern? Health Promot Perspect. 2015 [access: 25/10/2015]; 5(3):176-82. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4667257/
6. Konuspayeva G, Faye B, Loiseau G, Diacono E, Akhmetsadykova S. Pollution of camel milk by heavy metals in Kazakhstan. Open Environmental Pollution and Toxicology Journal. 2009 [access: 10/11/2009]; 1: 112-118. Available from: https://agritrop.cirad.fr/552859/
7. Ahmad I, Zaman A, Samad N, Ayaz MM, Rukh S, Akbar A, Ullah N. Atomic absorption spectrophotometery detection of heavy metals in milk of camel, cattle, buffalo and goat from various areas of Khyber-Pakhtunkhwa (KPK), Pakistan. J Anal Bioanal Tech. 2017 [access: 22/06/2017]; 8(3):100367. Available from: https://www.omicsonline.org/open-access/atomic-absorption-spectrophotometery-detection-of-heavy-metals-in-milk-ofcamel-cattle-buffalo-and-goat-from-various-areas-of-khybe-2155-9872-1000367.php?aid=90806
8. Li P, Pan Y, Fang Y, Du M, Pei F, Shen F, et al. Concentrations and health risks of inorganic arsenic and methylmercury in shellfish from typical coastal cities in China: a simultaneous analytical method study. Food Chemistry. 2019 [access: 18/11/2018]; 278: 587-92. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0308814618320302
9. Ulman C, Gezer S, Anal Ö, Töre IR, Kirca Ü. Arsenic in human and cow's milk: a reflection of environmental pollution. Water, Air, and Soil Pollution. 1998 [access: 22/06/2017]; 101(1):411-16. Available from: https://link.springer.com/article/10.1023/A:1004990721068
10. Straif K, Benbrahim-Tallaa L, Baan R, Grosse Y, Secretan B, El Ghissassi F, et al. A review of human carcinogens--Part C: metals, arsenic, dusts, and fibres. Lancet Oncol. 2009 [access: 01/03/2009]; 10(5):453-4. Available from: https://pubmed.ncbi.nlm.nih.gov/19418618/
11. United States Environmental Protection Agency (USEPA). Method 3052 -Microwave assisted acid digestion of siliceous and organically based matrices. USEPA; 1996 [access: 01/12/1996]. Available from: https://www.epa.gov/sites/default/files/2015-12/documents/3052.pdf
12. Castro-González NP, Calderón-Sánchez F, Castro de Jesús J, Moreno-Rojas R, Tamariz-Flores JV, Pérez-Sato M, et al. Heavy metals in cow's milk and cheese produced in areas irrigated with waste water in Puebla, Mexico. Food Additives & Contaminants Part B. 2017 [access: 10/11/2017]; 11(1): 33-36. Available from: https://pubmed.ncbi.nlm.nih.gov/29086632
13. Licata P, Di Bella G, Potortì AG, Lo Turco V, Salvo A, Dugo GM. Determination of trace elements in goat and ovine milk from Calabria (Italy) by ICP-AES. Food Addit Contam Part B Surveill. 2012; 5(4):268-71. DOI: 10.1080/19393210.2012.705335
14. Khan N, Jeong IS, Hwang IM, Kim JS, Choi SH, Nho EY, et al. Analysis of minor and trace elements in milk and yogurts by inductively coupled plasma-mass spectrometry (ICP-MS). Food Chem. 2014 [access: 15/03/2014]; 147:220-4. Available from: https://pubmed.ncbi.nlm.nih.gov/24206709/
15. Ibrahim AS, Saad MF, Hafiz NM. Toxic Elements in Dried Milk and Evaluation of their Dietary Intake in Infant Formula. International Journal of Veterinary Science. 2020 [access: 11/07/2020]; 9(4): 563-567. Available from: https://www.researchgate.net/publication/354193470_Toxic_Elements_in_Dried_Milk_and_Evaluation_of_their_Dietary_Intake_in_Infant_Formula
16. Salah FAAE, Esmat IA, Mohamed AB. Heavy metals residues and trace elements in milk powder marketed in Dakahlia Governorate. International Food Research Journal. 2013 [access: 01/01/2013]; 20(4): 1807-12. Available from: https://www.researchgate.net/publication/256980744_Heavy_metals_residues_and_trace_elements_in_milk_powder_marketed_in_Dakahlia_Governorate
17. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy Metals Toxicity and the Environment. Experientia supplementum. 2012 [access: 26/08/2014]; 101:133-64. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4144270/
18. Pérez-Carrera A, Fernández-Cirelli A. Arsenic concentration in water and bovine milk in Cordoba, Argentina. Preliminary results. Journal of Dairy Research. 2005 [access: 17/07/2004]; 72:122-124. Available from: https://pubmed.ncbi.nlm.nih.gov/15747740/
19. Ngoc NTM, Chuyen NV, Thao NT, Duc NQ, Trang NTT, Binh NTT, et al. Chromium, Cadmium, Lead, and Arsenic Concentrations in Water, Vegetables, and Seafood Consumed in a Coastal Area in Northern Vietnam. Environmental health insights. 2020 [access: 02/04/2020]; 14:1-9. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7223865/
20. Yorifuji T, Tsuda T, Doi H, Grandjean P. Cancer excess after arsenic exposure from contaminated milk powder. Environmental health and preventive medicine. 2011 [access: 29/09/2010]; 16(3): 164-170. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3078290/
21. Uddh-Söderberga TE, Gunnarssona SJ, Hogmalmb KJ, Lindegård MIBG, Augustsson ALM. An assessment of health risks associated with arsenic exposure via consumption of homegrown vegetables near contaminated glassworks sites. Science of the Total Environment. 2015 [access: 07/07/2015]; 536:189-197. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0048969715303661?via%3Dihub
22. World Health Organization, Food and Agriculture Organization of the United Nations. Codex Alimentarius General standard for contaminants and toxins in food and feed. CXS 193-1995, Amended; 2019. [access: 29/10/2019]. Available from: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B193-1995%252FCXS_193e.pdf
Published
How to Cite
Issue
Section
License
Authors who have publications with this Journal accept the following terms:
- The authors will retain their copyright and guarantee the Journal the right of first publication of their work, which will simultaneously be subject to the Creative Commons Attribution License. The content presented here can be shared, copied and redistributed in any medium or format; Can be adapted, remixed, transformed or created from the material, using the following terms: Attribution (giving appropriate credit to the work, providing a link to the license, and indicating if changes have been made); non-commercial (you cannot use the material for commercial purposes) and share-alike (if you remix, transform or create new material from this work, you can distribute your contribution as long as you use the same license as the original work).
- The authors may adopt other non-exclusive license agreements for the distribution of the published version of the work (for example: depositing it in an institutional electronic archive or publishing it in a monographic volume) as long as the initial publication in this Journal is indicated.
- Authors are allowed and recommended to disseminate their work through the Internet (e.g., in institutional electronic archives or on their website) before and during the submission process, which can produce interesting exchanges and increase citations. of the published work.