Effects of hyperbaric pressure on the oxidative stress status in healthy subjects
Keywords:
biomarkers, catalase, decompression, free radicals, healthy volunteers, malondialdehyde, oxidative stress, superoxide dismutase.Abstract
Introduction: In the hyperbaric pressure environment the partial pressure of each gas component increases, which increases oxygen partial pressure. This causes the generation of free radicals and oxidative stress.
Objective: To determine the effects of hyperbaric pressure on the oxidative stress status in healthy subjects.
Methods: 29 healthy men performed standardized hyperbaric chamber dive to a depth of 30 meters of water (msw) for 30 minutes. Blood samples were collected before compression, immediately after decompression and 1 hour after decompression. The levels of Malondialdehyde, Catalase and Superoxide Dismutase were measured in blood samples.
Results: Malondialdehyde activity increased immediately after decompression and recovered at 1 hour after decompression. Superoxide Dismutase enzyme activity decreased immediately after decompression as well as 1 hour after decompression. Catalase enzyme activity increased immediately after decompression, which was significant at 1 hour after decompression.
Conclusion: Changes in the biologic markers Malondialdehyde, Catalase and Superoxide Dismutase suggest the appearance of oxidative stress under the influence of a hyperbaric pressure environment.
Downloads
References
2. Bin-Jaliah I, Dallak M, Haffor ASA. Effect of hyperoxia on the ultrastructural pathology of alveolar epithelium in relation to glutathione peroxidase, lactate dehydrogenase activities, and free radical production in rats, rattus norvigicus. Ultrastruct Pathol. 2009; 33:112-22. DOI: 10.1080/01913120902889179
3. Jamieson D, Chance B, Cadenas E, Boveris A. The relation of free radical production to hyperoxia. Annu Rev Physiol. 1986; 48:703-19. DOI: 10.1146/annurev.ph.48.030186.003415
4. Pott F, Westergaard P, Mortensen J, Jansen EC. Hyperbaric oxygen treament and pulmonary function. Undersea Hyperb Med. 1999 [access: 01/09/1999]; 26(4):225-28. Available from: https://pubmed.ncbi.nlm.nih.gov
5. Ferrer MD, Sureda A, Batle JM, Tauler P, Tur JA, Pons A. Scuba diving enhances endogenous antioxidant defenses in lymphocytes and neutrophils. Free Radic Res. 2007; 41(3): 274-281. DOI: 10.1080/10715760601080371
6. Sureda A, Batle JM., Ferrer MD, Mestre-Alfaro A, Tur JA, Pons A. Scuba diving activates vascular antioxidant system. Int J Sports Med. 2012; 33:531-6. DOI: 10.1055/s-0031-1297957
7. Gasier HG, Fothergill DM. Oxidative stress, antioxidant defenses and nitric oxide production following hyperoxic exposures. Undersea Hyperb Med. 2013 [access: 21/05/2013]; 40(2):125-34. Available from: https://pubmed.ncbi.nlm.nih.gov/23682544/
8. Kasperczyk S, Birkner E, Kasperczyk A, Zalejska-Fiolka J. Activity of superoxide dismutase and catalase in people protractedly exposed to lead compounds. Ann Agric Environ Med. 2004 [access: 11/10/2004]; 11: 291 - 296. Available from: https://www.proquest.com/openview/10c7238e1d4f603cf07810938d672190/1?pq-origsite=gscholar&cbl=5221234
9. Laher I. Systems biology of free radicals and antioxidants. Vancouver, British Columbia, Canada: Springer; 2014.
10. Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev. 2014; 94:329 - 354. DOI: 10.1152/physrev.00040.2012
11. Sureda A, Ferrer MD, Batle JM, Tauler P, Tur JA, Pons A. Scuba diving increases erythrocyte and plasma antioxidant defenses and spares NO without oxidative damage. Med Sci Sports Exerc. 2009; 41(6):1271-6. DOI: 10.1249/MSS.0b013e3181951069
12. Kozakiewicz M, Kędziora-Kornatowska K, Kaczerska D, Siermontowski P, Olszanski R, Krefft K. Influence of exposure in hyperbaric chambers on selected parameters of oxidative stress in professional divers. Undersea Hyperb Med. 2018 [access: 01/01/2018]; 45(1):49-54. https://europepmc.org/article/med/29571232
13. Bhutia Y, Ghosh A, Sherpa ML, Pal R, Mohanta PK. Serum malondialdehyde level: surrogate stress marker in the sikkimese diabetics. J Nat Sci Biol Med. 2011; 2(1):107-12. DOI: 10.4103/0976-9668.82309
14. Radojevic-Popovic R, Zivkovic V, Jeremic N, Sretenovic J, Velicanin N, Bradic J, et al. An evaluation of the redox state in professional scuba divers. Undersea Hyperb Med. 2015 [access: 01/09/2015]; 42(5):409-16. https://pubmed.ncbi.nlm.nih.gov/26591980/
15. Zwart SR., Kala G, Smith SM. Body iron stores and oxidative damage in humans increased during and after a 10- to 12-day undersea dive. J Nutr. 2008; 139:90-5. DOI: 10.3945/jn.108.097592
Published
How to Cite
Issue
Section
License
Authors who have publications with this Journal accept the following terms:
- The authors will retain their copyright and guarantee the Journal the right of first publication of their work, which will simultaneously be subject to the Creative Commons Attribution License. The content presented here can be shared, copied and redistributed in any medium or format; Can be adapted, remixed, transformed or created from the material, using the following terms: Attribution (giving appropriate credit to the work, providing a link to the license, and indicating if changes have been made); non-commercial (you cannot use the material for commercial purposes) and share-alike (if you remix, transform or create new material from this work, you can distribute your contribution as long as you use the same license as the original work).
- The authors may adopt other non-exclusive license agreements for the distribution of the published version of the work (for example: depositing it in an institutional electronic archive or publishing it in a monographic volume) as long as the initial publication in this Journal is indicated.
- Authors are allowed and recommended to disseminate their work through the Internet (e.g., in institutional electronic archives or on their website) before and during the submission process, which can produce interesting exchanges and increase citations. of the published work.