Conceptual positioning for the obesity phenotypes identification at the beginning of pregnancy
Keywords:
adiposity, pregnancy, phenotypes, body mass index, obesity, metabolic syndrome.Abstract
The obesity phenotypes settle down in individuals with equal body mass index that present different metabolic profiles and health prognosis. Its presence from early stages of life increases the probability that women get pregnant with this characteristic, so it is considered necessary to promote a conceptual position for its identification at the beginning of pregnancy. In normal-weight pregnant woman, we propose to use the value of 30% or the 90th percentile of the sum of the triceps and subescapularis skinfold to define obese normal-weight phenotype. Of these, those with values equal to or greater than the 75th percentile of visceral adiposity index and the lipids accumulation product would be considered obese metabolically normal-weight. In obese pregnant woman the use of the criteria that define metabolic syndrome in women, is proposed to identify the metabolic health. The exposed theoretical foundations demonstrate the suitability of stratifying metabolic risk at the beginning of pregnancy by classifying it into obesity phenotypes, through anthropometric, biochemical, and clinical indicators.Downloads
References
2. Rosas Guzmán J, González Chávez A, Aschner P, Bastarrachea R, Sinay I, Costa Gil J, et al. Consenso Latinoamericano de la Asociacion Latinoamericana de Diabetes (ALAD). Epidemiología, Diagnóstico, Control, Prevención y Tratamiento del Síndrome Metabólico en Adultos. Rev Alad. 2010[acceso: 31/07/2022];18(1):25-44. Disponible en: https://www.revistaalad.com/pdfs/100125-44.pdf
3. Ruderman N, Berchtold P, Schneider S. Obesity associated disorders in normal-weight individuals: some speculations. Int J Obes. 1981;6(Suppl 1):151-7.
4. Communication S. American Medical Association. Executive Summary of the Third Report (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). J Am Med Assoc. 2001;285(19):2486-97. DOI: 10.1001/jama.285.19.2486
5. De Lorenzo A, Martinoli R, Vaia F, Di Renzo L. Normal weight obese (NWO) women: an evaluation of a candidate new syndrome. Nutr Metab Cardiovasc. 2006[acceso: 31/01/2023]; 16:[aprox. 5 pant.] Disponible en: http://www.sciencedirect.com/science/article/pii/S0939475305001912
6. Madeira F, Silva A, Veloso H, Goldani M, Kac G, Cardoso V. Normal weight obesity is associated with metabolic syndrome and insulin resistance in young adults from a middle-income country. PLoSOne. 2013[acceso: 31/01/2023];8(3):[aprox. 5 pant.] Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3610876/pdf/pone.0060673.pdf
7. Du T, Yu X, Zhang J, Sun X. Lipid accumulation product and visceral adiposity index are effective markers for identifying the metabolically obese normal-weight phenotype. Acta Diabetol. 2015[acceso: 31/01/2023]; 52:855-63. Disponible en: https://link.springer.com/article/10.1007%2Fs00592-015-0715-2
8. Liu C, Wang C, Guan S, Liu H, Wu X, Zhang Z. The Prevalence of Metabolically Healthy and Unhealthy Obesity according to Different Criteria Obesity Facts. 2019 [acceso: 21/08/2022];12(1):78-90. Disponible en: https://www.karger.com/Article/FullText/495852
9. Correa-Rodríguez M, González-Ruíz K, Rincón-Pabón D, Izquierdo M, García-Hermoso A, Agostinis-Sobrinho C, et al. Normal-Weight Obesity Is Associated with Increased Cardiometabolic Risk in Young Adults. Nutrients. 2020[acceso: 21/08/2022]; 12(4):1106. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7230158/pdf/nutrients-12-01106.pdf
10. April-Sanders AK, Rodriguez CJ. Metabolically Healthy Obesity Redefined. JAMA Network Open. 2021[acceso: 21/08/2022]; 4(5):e218860. Disponible en: http://dx.doi.org/10.1001/jamanetworkopen.2021.8860
11. Pluta W, Dudzinska W, Lubkowska A. Metabolic Obesity in People with Normal Body Weight (MONW)-Review of Diagnostic Criteria. Int. J. Environ. Res. Public Health. 2022[acceso: 18/03/2023]; 19(2):624. Disponible en: https://www.mdpi.com/1660-4601/19/2/624
12. Ashtary-Larky D, Niknam S, Alipour M, Bagheri R, Asbaghi O, Mohammadian M, et al. Are Women with Normal-Weight Obesity at Higher Risk for Cardiometabolic Disorders? Biomedicines. 2023[acceso: 18/03/2023]; 11(2):[aprox. 13 pant.].Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9953250/
13. Pastusiak K, Przyslawski J. The criteria of the identification of metabolic obesity among people with normal body weight and their use in everyday practice. Journal of Medical Science. 2018[acceso: 21/03/2023]; 87(1):34-9. Disponible en: https://doi.org/10.20883/jms.2018.259
14. Wang W, Wei W, Song Y, Guo H, Zhang X, Wang X, et al. Metabolically healthy obesity and unhealthy normal weight rural adults in Xinjiang: prevalence and the associated factors. BMC Public Health. 2021[acceso: 21/03/2023]; 21(1940):1-10. Disponible en: https://doi.org/10.1186/s12889-021-11996-y
15. Blüher M. Metabolically Healthy Obesity. Endocrine Reviews. 2022[acceso: 21/03/2023];41(3):1-16. Disponible en: https://academic.oup.com/edrv/article/41/3/bnaa004/5780090
16. Muñoz Gualan GG, Muñoz Gualan AP. Metabolic syndrome prevalence in military personnel and correlation with anthropometric values in Ecuador. Rev Cubana Med Milit. 2023[acceso: 17/04/2023]; 52(2):e02302401. Disponible en: https://revmedmilitar.sld.cu/index.php/mil/article/view/2401
17. Orozco Muñoz C, Cañizares Luna O, Sarasa Muñoz N. Estado nutricional, acumulación de tejido adiposo y vulnerabilidad cardiometabólica en gestantes sanas de peso adecuado. Gac Méd Espirit. 2018[acceso: 21/03/2023]; 20(2):40-7. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1608-89212018000200040&lng=es
18.Gaston S, Tulve N, Ferguson T. Abdominal obesity, metabolic dysfunction, and metabolic syndrome in U.S. adolescents: National Health and Nutrition Examination Survey 2011-2016. Annals of Epidemiology. 2019[acceso: 21/03/2023]; 30:30-6. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6459599/
19. Hung CY, Chang CW, Chen CJ, Chang CW, Cheng HY, Chen MJ. Sonographic Measurement of Visceral Fat and Prediction of Metabolic Syndrome in the Elderly. International Journal of Gerontology. 2018[acceso: 21/03/2023]; 12(4):331-5. Disponible en: https://www.sciencedirect.com/science/article/pii/S1873959818300279
20. Cuatrecasas G, de Cabo F, Coves MJ, Patrascioiu I, Aguilar G, March S, et al. Ultrasound measures of abdominal fat layers correlate with metabolic syndrome features in patients with obesity. 2020[acceso: 21/03/2023]; 6(6):660-7. Disponible en: https://pubmed.ncbi.nlm.nih.gov/33354344/
21. Firoozeh A, Somayeh M, Hosseini R, Amirhossein M. Ultrasound Evaluation of Visceral Fat Thickness for Prediction of Metabolic Syndrome in the First Trimester of Pregnancy in a Sample of Non-obese Iranian Women. Oman Medical Journal. 2019[acceso: 21/03/2023]; 34(4):308-12. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6642717/
22. Alves JG, Souza ASR, Figueiroa JN, de Araújo CAL, Guimarães A, Ray JG. Visceral Adipose Tissue Depth in Early Pregnancy and Gestational Diabetes Mellitus a Cohort Study. Scientific Reports. 2020[acceso: 21/03/2023]; 10(1):2032. Disponible en: https://doi.org/10.1038/s41598-020-59065-5
23. Gültekin A, Özsoy G, Pinar O, Akdur G. The predictive value of 1erst trimester anthropometric and Ultrasonographic adipose tissue measurements in gestational diabetes mellitus. ObstetGynaecol. 2021[acceso: 21/12/2022]; 47(9):[aprox. 6pant.]. Disponible en: https://obgyn.onlinelibrary.wiley.com/doi/10.1111/jog.14887?af=R
24. Pétursdóttir Maack H, Sundström Poromaa I, Lindström L, Mulic-Lutvica A, Junus K, WikströmAK. Ultrasound estimated subcutaneous and visceral adipose tissue thicknesses and risk of pre-eclampsia. Scientific Reports. 2021[acceso: 21/12/2022]; 11(1):22740. Disponible en: https://doi.org/10.1038/s41598-021-02208-z
25. Tabatabaei-Malazy O, Saeedi Moghaddam S, Masinaei M. Association between being metabolically healthy/unhealthy and metabolic syndrome in Iranian adults. PLoSONE. 2022[acceso: 21/12/2022]; 17(1):e0262246. Disponible en: https://pubmed.ncbi.nlm.nih.gov/34990491/
26. De Lorenzo A, Soldati L, Sarlo F, Calvani M, Di Lorenzo N, Di Renzo L. New obesity classification criteria as a tool for bariatric surgery indication. World J Gastroenterol. 2016[acceso: 21/12/2022]; 22(2):[aprox. 5pant.]. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4716069/#__ffn_sectitle
27. Tayefi M, Tayefi B, Darroudi S, Mohammadi-Bajgiran M, Mouhebati M, Heidari-Bakavoli A, et al. There is an association between body fat percentage and metabolic abnormality in normal weight subjects: Iranian large population. Translational Metabolic Syndrome Research. 2019[acceso: 21/12/2022]; 2(1):11-6. Disponible en: https://www.sciencedirect.com/science/article/pii/S2588930319300015
28. Chen Q, Zhou Y, Dai C, Zhao G, Zhu Y, Zhang X. Metabolically Abnormal But Normal-Weight Individuals Had a Higher Risk of Type 2 Diabetes Mellitus in a Cohort Study of a Chinese Population. Frontiers in Endocrinology. 2021[acceso: 21/12/2022]; 2:[aprox. 8pant.].Disponible en: https://doi.org/10.3389/fendo.2021.724873
29. Orozco Muñoz C. Salud cardiometabólica en el postparto a corto plazo en mujeres sanas de peso adecuado al momento de la captación [Tesis Doctoral]. Villa Clara. Cuba: Universidad de Ciencias Médicas de Villa Clara; 2021. Disponible en: http://tesis.sld.cu/index.php?P=FullRecord&ID=770
30. Karelis A, Faraj M, Bastard J, St-Pierre D, Brochu M, Prud' homme D, et al. The metabolically healthy but obese individual presents a favorable inflammation profile. J Clin Endocrinol Metab. 2005[acceso: 18/03/2023]; 90:4145-50. Disponible en: https://doi.org/10.1016/j.jada.2007.10.013
31. Vanavanan S, Srisawasdi P, Rochanawutanon M, Kumproa N, Kruthkul K, Kroll M. Performance of body mass index and percentage of body fat in predicting cardiometabolic risk factors in Thai adults. Diabetes Metab Syndr Obes. 2018[acceso: 18/03/2023]; 11:241-53. Disponible en: https://doi.org/10.2147/DMSO.S167294
32. Shukohifar M, Mozafari Z, Rahmanian M, Mirzaei M. Performance of body mass index and body fat percentage in predicting metabolic syndrome risk factors in diabetic patients of Yazd, Iran. BMC Endocrine Disorders. 2022[acceso: 18/03/2023]; 22(1):216. Disponible en: https://doi.org/10.1186/s12902-022-01125-0
33. Sun J, Zhang Z, Liu Z, Li J, Kang W. The Correlation of Total Percent Fat With Alterations in Cholesterol and Triglycerides in Adults. Frontiers in nutrition. 2022[acceso: 18/03/2023]; 9:[aprox. 6pant.].Disponible en: https://www.frontiersin.org/articles/10.3389/fnut.2022.881729
34. Amato M, Giordano C, Galia M, Criscimanna A, Vitabile S, Midiri M. Visceral Adiposity Index: a reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care. 2010[acceso: 18/03/2023]; 33(4):[aprox. 9 pant.]. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/20067971
35. Kahn H. The "lipid accumulation product" performs better than the body mass index for recognizing cardiovascular risk:a population based comparison. BMC Cardiovascular Disorders. 2005[acceso: 18/03/2023]; 5(26):[aprox. 7pant.]. Disponible en: https://bmccardiovascdisord.biomedcentral.com/articles/10.1186/1471-2261-5-26
36. Ahn N, Baumeister S, Ute Amann U, Rathmann W, Peters A, Huth C. Visceral adiposity index (VAI), lipid accumulation product (LAP), and product of triglycerides and glucose (TyG) to discriminate prediabetes and diabetes Scientific Reports. 2019[acceso: 18/03/2023]; 9(1):[aprox. 9pant.]. Disponible en: https://www.researchgate.net/publication/334235752_Visceral_adiposity_index_VAI-_lipid_accumulation_product_LAP_and_product_of_triglycerides_and_glucose_TyG-_to_discriminate_prediabetes_and_diabetes
37. Ramírez Mesa C, Sarasa Muñoz NL, Artiles Santana A, Fernández Gregorio T, Álvarez-Guerra González E, Cañizares Luna O. Fenotipo normopeso obeso en gestantes y condición trófica del recién nacido. Archivo Médico de Camagüey. 2022[acceso: 18/03/2023]; 26:e9028. Disponible en: http://revistaamc.sld.cu/index.php/amc/article/view/9028
38. Artiles Santana A, Sarasa Muñoz NL, Izaguirre E, Álvarez-Guerra E, Cañizares Luna O. Validation of a New Diagnostic Index to Determine Metabolic Obesity Phenotypes in Normal-Weight Women in Early Pregnancy. MEDICC Review. 2022[acceso: 18/03/2023]; 24(3):30-5. Disponible en: https://doi.org/10.37757/MR2022.V24.N3-4.3
39. Torres Pérez J, Sarasa Muñoz N, Álvarez-Guerra González E, Ramírez Mesa C, Cañizares Luna O, Artiles Santana A. Capacidad discriminatoria de la grasa visceral para alteraciones cardiometabólicas frecuentes en gestantes según fenotipos metabólicos. CorSalud. 2023[acceso: 05/10/2023]; 15(2):[aprox. 10 pant.]. Disponible en: https://revcorsalud.sld.cu/index.php/cors/article/view/985
40. Hernández J, Padrón M. Segundo Consenso Cubano de Diabetes y Embarazo. Revista Cubana de Endocrinología. 2018[acceso: 18/03/2023]; 29(1):[aprox. 5pant.]. Disponible en: http://www.revendocrinologia.sld.cu/index.php/endocrinologia/article/view/97
41. Águila Setién S, Breto García A, Cabezas Cruz E, Delgado Calzado J, Stalina Santiesteban A. Obstetricia y perinatología. Diagnóstico y tratamiento. La Habana: Ecimed; 2012.
42. Zhou Z, Macpherson J, Gray S, Gill J, Welsh P, Celis-Morales C. Are people with metabolically healthy obesity really healthy? A prospective cohort study. Diabetologia. 2021[acceso: 18/03/2023]; 64(9):1963-72. Disponible en: https://link.springer.com/article/10.1007/s00125-021-05484-6
43. Orozco Muñoz C, Sarasa Muñoz NL, Hernández Díaz D, Cañizares Luna O, Álvarez-Guerra González E, Artiles Santana A. Indicadores antropométricos para la caracterización de la adiposidad corporal en gestantes sanas al inicio del embarazo. CorSalud. 2018[acceso: 18/03/2023]; 10(4):274-85. Disponible en: http://scielo.sld.cu/scielo.php?pid=S2078-71702018000400274&script=sci_arttext&tlng=en
44. Hernández Díaz Y, Álvarez-Guerra González E, Hernández Díaz D, Sarasa Muñoz N, Limas Pérez Y, Cañizares Luna O. Componentes de constitución corporal materna relacionados con nacimientos grandes para la edad gestacional. Medicent Electrón. 2018[acceso: 18/03/2023]; 22(2):[aprox. 12pant.]. Disponible en: http://scielo.sld.cu/pdf/mdc/v22n2/mdc03218.pdf
Published
How to Cite
Issue
Section
License
Authors who have publications with this Journal accept the following terms:
- The authors will retain their copyright and guarantee the Journal the right of first publication of their work, which will simultaneously be subject to the Creative Commons Attribution License. The content presented here can be shared, copied and redistributed in any medium or format; Can be adapted, remixed, transformed or created from the material, using the following terms: Attribution (giving appropriate credit to the work, providing a link to the license, and indicating if changes have been made); non-commercial (you cannot use the material for commercial purposes) and share-alike (if you remix, transform or create new material from this work, you can distribute your contribution as long as you use the same license as the original work).
- The authors may adopt other non-exclusive license agreements for the distribution of the published version of the work (for example: depositing it in an institutional electronic archive or publishing it in a monographic volume) as long as the initial publication in this Journal is indicated.
- Authors are allowed and recommended to disseminate their work through the Internet (e.g., in institutional electronic archives or on their website) before and during the submission process, which can produce interesting exchanges and increase citations. of the published work.