Evaluation and correction of the estimate of renal function in a Cuban adult population

Authors

Keywords:

creatinine, Cuba, glomerular filtration rate.

Abstract

Introduction: There are difficulties with the evaluation of renal function in the Cuban population.
Objectives: To evaluate and correct the estimate of renal function in a Cuban adult population.
Methods: Cross-sectional descriptive observational study. The universe was made up of all the adults who underwent blood laboratory tests at the Institute of Nephrology, Havana, Cuba, in the month of September 2022. The information was processed automatically (SPSS® version 21.0 and Excel). Frequency distribution analysis, Pearson's correlation analysis and a Student's t test for comparison of means were used to determine the relationship between the creatinine determination methods.
Results: 349 subjects were included. Mean creatinine concentration by the traceable Isotope Dilution Mass Spectroscopy (IDMS) method was 0,24 mg/dL lower than the non-traceable automated method, and 0,29 mg/dL lower than the non-traceable manual method. The respective Pearson correlations were 0,989 and 0,988. With the correction, the differences were less than 0,01 mg/dl. Mean differences in estimated glomerular filtration rates exceeded 15 mL/min/1,73 m2BS and decreased to less than 0,74 mL/min/1,73 m2BS with correction. In 257 individuals, creatinine was measured by enzymatic method with slight differences with respect to the traceable IDMS.
Conclusions: The differences in the measurements of creatinine concentrations and in the estimated glomerular filtration rates between the traceable and non-traceable IDMS methods are notorious. With the suggested correction, the differences in measurements and estimates are reduced.

Downloads

Download data is not yet available.

Author Biographies

Yanetsy Córdova Rodríguez, Instituto de Nefrología

Jefa del Centro de Medios Diagnósticos

Raymed Antonio Bacallao Méndez, Instituto de Nefrología

Jefe del Departamento de Docencia e Investigaciones

Carlos Antonio Rodríguez García, Instituto de Nefrología

Bioestadístico del Departamento de Docencia e Investigaciones

References

1. Kashani K, Rosner MH, Ostermann M. Creatinine: From physiology to clinical application [Internet]. Eur J Intern Med. 2020 [acceso: 23/02/2023];72:9-14. Disponible en: https://pubmed.ncbi.nlm.nih.gov/31708357/

2. Bacallao Méndez RA, Mañalich Comas R. Estimación de la función renal. En: Bacallao Méndez RA, Mañalich Comas R, Díaz Galvizu K. Fisiología y exploración funcional renal [Internet]. 1ra Ed. La Habana: Editorial Ciencias Médicas; 2016. [acceso: 23/02/2023]. Disponible en: http://www.bvscuba.sld.cu/libro/fisiologia-y-exploracion-funcional-renal/

3. Luis-Lima S, Ortiz A. Assessment of the glomerular filtration rate [Internet]. Med Clin (Barc). 2023 [acceso: 23/02/2023]; 160(1):27-9. Disponible en: https://pubmed.ncbi.nlm.nih.gov/35945055/

4. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification [Internet]. Am J Kidney Dis. 2002; [acceso: 21/02/2023]; 39(2 sup 1):s1-266. Disponible en: https://pubmed.ncbi.nlm.nih.gov/11904577/

5. Lee SC, Lim LM, Chang EE, Chiu YW, Hwang SJ, Chen HC. Effect of differences in serum creatinine estimation methodologies on estimated glomerular filtration rate [Internet]. Singapore Med J. 2019 [acceso: 30/03/2023];60(9):468-73. Disponible en: https://pubmed.ncbi.nlm.nih.gov/31570950/

6. He L, Yu J, Han G, Huang D, Han L, Zhang Q, et al. Analytical performance evaluation of different test systems on serum creatinine assay [Internet]. J Clin Lab Anal. 2022 [acceso:23/02/2023];36(2):e24206. Disponible en: https://pubmed.ncbi.nlm.nih.gov/34957600/

7. Carrión Domínguez IR, García Borges L, Suárez Pérez Y, Rodríguez Fernández B, Aja Masa G. Validación del método enzimático para la determinación de creatinina en suero y orina [Internet]. Rev Cubana Farm. 2015 [acceso: 23/02/2023]; 49(4): 618-29. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0034-75152015000400003&lng=es

8. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al; CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). A new equation to estimate glomerular filtration rate [Internet]. Ann Intern Med. 2009 [acceso: 19/07/2023];150(9):604-12. Disponible en: https://pubmed.ncbi.nlm.nih.gov/19414839/

9. Del Moral-Trinidad LE, Romo-González T, Carmona Figueroa YP, Barranca Enríquez A, Palmeros Exsome C, Campos-Uscanga Y. Potential for body mass index as a tool to estimate body fat in young people [Internet]. Enferm Clin (Engl Ed). 2021 [acceso: 19/02/2023];31(2):99-106. Disponible en: https://pubmed.ncbi.nlm.nih.gov/32933847/

10. Inker LA, Eneanya ND, Coresh J, Tighiouart H, Wang D, Sang Y, et al. New Creatinine- and Cystatin C-Based Equations to Estimate GFR without Race [Internet]. N Engl J Med. 2021 [acceso: 19/07/2023]; 385(19):1737-49. Disponible en: https://pubmed.ncbi.nlm.nih.gov/34554658/

11. Xie Y, Bowe B, Mokdad AH, Xian H, Yan Y, Li T, et al. Analysis of the Global Burden of Disease study highlights the global, regional, and national trends of chronic kidney disease epidemiology from 1990 to 2016 [Internet]. Kidney Int. 2018 [acceso: 23/02/2023] 94(3):567-81. Disponible en: https://pubmed.ncbi.nlm.nih.gov/35899580/

12. ONEI. Anuario Estadístico de Cuba 2020: Población [Internet]. La Habana: Oficina Nacional de Estadísticas e información; 2021. [acceso: 23/02/2023]. Disponible en: http://www.onei.gob.cu/node/16275

13. Bonet-Gorbea M, Varona-Pérez P, Chang-La Rosa M, García-Rocha RG, Suárez-Medina R, Arcia-Montes de Oca N, et al. III Encuesta nacional de factores de riesgo y actividades preventivas de enfermedades no transmisibles. Cuba 2010-2011. 1ra ed. La Habana: Editorial Ciencias Médicas; 2015. [acceso: 12/02/2023]. Disponible en: https://extranet.who.int/ncdccs/Data/CUB_C5_Encuesta_nacional_FR_2010-11.pdf

14. Küme T, Saglam B, Ergon C, Sisman AR. Evaluation and comparison of Abbott Jaffe and enzymatic creatinine methods: Could the old method meet the new requirements? [Internet]. J Clin Lab Anal. 2018 [acceso: 19/02/2023];32(4):e22168. Disponible en: https://pubmed.ncbi.nlm.nih.gov/28205269/

15. Jelani I, Bunza JM, Abbas HK, Yale BM, Abacha FZ, Abdullahi HL. Comparison between Jaffe and Enzymatic Creatinine Assays in Renal Dysfunction Subjects [Internet]. Saudi J Med Pharm Sci. 2021 [acceso: 12/02/2023]; 7(6):267-69. Disponible en: https://saudijournals.com/media/articles/SJMPS_76_267-269_FT.pdf

16. Stevens LA, Levey AS. Clinical implications of estimating equations for glomerular filtration rate [Internet]. Ann Intern Med. 2004 [acceso: 19/02/2023];141(12):959-61. Disponible en: https://pubmed.ncbi.nlm.nih.gov/15611494/

17. Coresh J, Astor BC, McQuillan G, Kusek J, Greene T, Van Lente F, et al. Calibration and random variation of the serum creatinine assay as critical elements of using equations to estimate glomerular filtration rate [Internet]. Am J Kidney Dis. 2002 [acceso: 19/02/2023];39(5):920-9. Disponible en: https://pubmed.ncbi.nlm.nih.gov/11979335/

18. Myers GL, Miller WG, Coresh J, Fleming J, Greenberg N, Greene T, et al. National Kidney Disease Education Program Laboratory Working Group. Recommendations for improving serum creatinine measurement: a report from the Laboratory Working Group of the National Kidney Disease Education Program [Internet]. Clin Chem. 2006 [acceso: 19/02/2023];52(1):5-18. Disponible en: https://pubmed.ncbi.nlm.nih.gov/16332993/

19. Niazpour F, Bahiraee A, Esfahani EN, Abdollahi M, Bandarian F, Razi F. Comparison of glomerular filtration rate estimation using Jaffé and enzymatic creatinine assays in diabetic patients [Internet]. J Diabetes Metab Disord. 2019 [acceso: 19/02/2023];18(2):551-56. Disponible en: https://pubmed.ncbi.nlm.nih.gov/31890681/

20. Meeusen JW, Kasozi RN, Larson TS, Lieske JC. Clinical Impact of the Refit CKD-EPI 2021 Creatinine-Based eGFR Equation [Internet]. Clin Chem. 2022 [acceso: 19/02/2023];68(4):534-39. Disponible en: https://pubmed.ncbi.nlm.nih.gov/35038721/

21. Delanghe JR, Cobbaert C, Harmoinen A, Jansen R, Laitinen P, Panteghini M. Focusing on the clinical impact of standardization of creatinine measurements: a report by the EFCC Working Group on Creatinine Standardization[Internet]. Clin Chem Lab Med. 2011 [acceso: 19/02/2023]; 49(6):977-82. Disponible en: https://pubmed.ncbi.nlm.nih.gov/21428858/

22. Shanthaveeranna GK, Devanath A. Jaffe's kinetic method comparison between isotope dilution mass spectrometry standardized versus nonstandardized method [Internet]. Indian J Health Sci Biomed Res. 2020 [acceso: 25/03/2023]; 13(2):137-9. Disponible en: https://oa.mg/work/10.4103/kleuhsj.kleuhsj_39_20

23. Sharma A, Sahasrabudhe V, Musib L, Zhang S, Younis I, Kanodia J. Time to Rethink the Current Paradigm for Assessing Kidney Function in Drug Development and Beyond [Internet]. Clin Pharmacol Ther. 2022 [acceso: 19/02/2023];112(5):946-58. Disponible en: https://pubmed.ncbi.nlm.nih.gov/34800044/

Published

2024-09-07

How to Cite

1.
Córdova Rodríguez Y, Bacallao Méndez RA, Rodríguez García CA. Evaluation and correction of the estimate of renal function in a Cuban adult population. Rev Cubana Med Milit [Internet]. 2024 Sep. 7 [cited 2025 May 19];53(3):e024049531. Available from: https://revmedmilitar.sld.cu/index.php/mil/article/view/49531

Issue

Section

Clinical Practice Article