Design of a mortality predictive scale in patients with chronic kidney disease

Authors

Keywords:

chronic kidney disease, forecast, mortality.

Abstract

Introduction: The prediction of mortality in patients with chronic kidney disease using scales or prognostic indices has real limitations.
Objective: Design a mortality predictive scale in patients with chronic kidney disease.
Methods: A prospective observational, analytical, longitudinal study was carried out in 169 patients with chronic kidney disease from January 1, 2022 to December 31, 2022. The research was developed in 2 stages: during the first 6 months of the year, the variables were analyzed for the design of the predictive scale. In the next 6 months, patients were followed to identify the occurrence or not of the dependent variable mortality. The discriminatory capacity of the predictive scale was determined and survival curves were evaluated.
Results: The variables that made up the predictive tool were age > 65 years, cardiovascular disease, albumin < 35 g/L, dyslipidemia, hemoglobin < 10 g/L, and uric acid > 390 mmol/L. The discriminatory power to predict mortality was good, C index: 0.856 (95% CI: 0.783-0.929; p< 0.001). Patients with values less than 4 points had a mean survival of 149.438 ± 7.296 days. In contrast, those with higher values presented a mean survival of 93.128 ± 8.545 days.
Conclusions: The scale contributed to the stratification of the mortality risk of the patients. The variables included are easy to determine and interpret, making it a useful model for medical decision making in the current clinical setting.

Downloads

Download data is not yet available.

Author Biographies

Sergio Orlando Escalona González, Universidad de Ciencias Médicas de Las Tunas. Policlínico Docente: "Manuel Fajardo Rivero"

Residente de Tercer año de Medicina General Integral. Diplomado en Nefrología. Profesor instructor.

Yailé Caballero Mota, Universidad de Camagüey

Doctora en Ciencias de la Computación. Ingeniera cibernética. Profesor titular. Investigador titular

Yanela Rodríguez Alvarez, Universidad de Camagüey

Doctora en Ciencias de la Computación. Ingeniera cibernética. Profesor auxiliar. Investigador auxiliar

Mirna León Acebo, Universidad de Ciencias Médicas de Las Tunas

Doctora en Ciencias Pedagógicas. Especialista de Segundo grado en Embriología Humana. Profesor Titular

Zoraida Caridad González Milán, Hospital General Docente: "Dr. Ernesto Guevara de la Serna"

Especialista de Segundo grado en Medicina General Integral y Segundo grado en Nefrología. Máster en Longevidad Satisfactoria. Profesor auxiliar. Investigador agregado

Beatriz Ricardo Paez, Universidad de Ciencias Médicas de Las Tunas

Estudiante de quinto año de Medicina. Alumna ayudante en Nefrología

Katiuska Danay Rodríguez Espinosa, Hospital General Docente: "Dr. Ernesto Guevara de la Serna"

Especialista de Primer grado en Medicina General Integral y Primer grado en Nefrología. Profesor Asistente

References

1. Bello A, Okpechi I, Osman M, Cho Y, Htay H, Jha V, et al. Epidemiology of hemodialysis outcomes. Nature Reviews Nephrology. 2022 [acceso: 15/05/2023];18(6):378-95. DOI: 10.1038/s41581-022-00542-7

2. Anuario Estadístico de Salud, 2021. Ministerio de Salud Pública. Dirección de Registros médicos y Estadísticas de salud. La Habana, 2022. [acceso: 15/05/2023]. Disponible en: http://bvscuba.sld.cu/anuario-estadistico-de-cuba/

3. Khoo C, Gao F, Choong H. Death and cardiovascular outcomes in end-stage renal failure patients on different modalities of dialysis. Ann Acad Med Singap. 2022 [acceso: 15/05/2023];51(3):136-42. DOI: 10.47102/annals-acadmedsg.20219

4. González-Milán ZC, Escalona-González SO, Ramírez-Fernández A. Factores pronósticos de mortalidad en pacientes con insuficiencia renal crónica terminal en terapia hemodialítica. Revista Electrónica Dr. Zoilo E. Marinello Vidaurreta. 2019 [acceso: 15/05/2023]; 44(6):1-14. Disponible en: http://revzoilomarinello.sld.cu/index.php/zmv/article/view/2041

5. Escalona González SO, González Milán ZC. Inteligencia artificial en la predicción de mortalidad por enfermedad renal crónica. An Acad Cienc Cuba. 2022 [acceso: 15/05/2023];12(3):e1292. Disponible en: http://www.revistaccuba.cu/index.php/revacc/article/view/1292

6. Belur Nagaraj S, Pena MJ, Ju W, The BEAt-DKD Consortium. Machine-learning- based early prediction of end-stage renal disease in patients with diabetic kidney disease using clinical trials data. Diabetes Obes Metab. 2020 [acceso:15/05/2023];22(12):2479-86. DOI: 10.1111/dom.14178

7. Gamboa Graus ME. Estadística aplicada a la investigación educativa. Revista Dilemas Contemporáneos: Educación, política y valores. 2018 [acceso:15/05/2023];5(2):1-32. Disponible en: http://www.dilemascontemporaneoseducacionpoliticayvalores.com/index.php/dile-mas/article/view/427/443

8. Marín Prada MdC, Gutiérrez García F, Martínez Morales MA. Características y causas de muerte de pacientes fallecidos con enfermedad renal crónica. Cuba 2011-2016. Revista Habanera de Ciencias Médicas. 2021 [acceso: 15/05/2023];20(5):e3579. Disponible en: https://revhabanera.sld.cu/index.php/rhab/article/view/3579

9. Ruperto M, Barril G. Nutritional status, body composition, and inflammation profile in older patients with advanced chronic kidney disease stage 4-5: A case control study. Nutrients. 2022 [acceso:15/05/2023];14(17):3650. DOI: 10.3390/nu14173650

10. Matsushita K, Ballew S, Wang A. Epidemiology and risk of cardiovascular disease in populations with chronic kidney disease. Nature Reviews Nephrology. 2022 [acceso: 15/05/2023];18(11):696-707. DOI: 10.1038/s41581-022-00616-6

11. Lee S, Kang S, Joo Y. Smoking, smoking cessation, and progression of chronic kidney disease: results form KNOW-CKD study. Nicotine & Tobacco Research. 2021 [acceso: 15/05/2023];23(1):92-98. DOI: 10. 1093/ntr/ntaa071

12. Liang X, Ye M, Tao M. The association between dyslipidemia and the incidence of chronic kidney disease in the general Zhejiang population: a retrospective study. BMC Nephrol. 2020 [acceso:15/05/2023]; 21(252):1-9. DOI: 10. 1186/s12882-020-01907-5

13. Feng-Ching S, Yi-Wen Ch, Mei-Chuan K. U-shaped association between waist-to-hip ratio and all-cause mortality in stage 3-5 chronic kidney disease patients with body mass index paradox. J Pers Med. 2021 [acceso: 15/05/2023];11(12):1355. DOI: 10.3390/jpm11121355

14. Miao H, Liu L, Wang Y. Chronic kidney disease biomarkers and mortality among older adults: A comparison study of survey samples in China and the United States. Plos One. 2022 [acceso:15/05/2023];17(1):e0260074. DOI: 10.1371/journal.pone.0260074

15. Cornish R, Bartlett J, Macleod J. Complete case logistic regression with a dichotomized continuous outcome led to biased estimates. Journal of Clinical Epidemiology. 2023 [acceso: 15/05/2023];154(2023):33-41. DOI: 10.1016/j.jclinepi.2022.11.022

16. Montalescot L, Dorard G, Speyer G. Patient perspectives on chronic kidney disease and decision-making about treatment. Discourse of participants in the French CKD-REIN cohort study. J. Nephrol. 2022 [acceso: 15/05/2023];35(5):1387-1397. DOI: 10.1007/s40620-022-01345-6

17. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. Reviewing the latest version. Int. J. Surg. Sci. 2014 [acceso: 15/05/2023];1(4):339-46. DOI: 10.32457/IJMSS.2014.042

18. Schmidt RJ, Landry DL, Cohen L. Derivation and validation of a prognostic model to predict mortality in patients with advanced chronic kidney disease. Nephrol Dial Transplant. 2019;34(9):1517-25. DOI: 10.1093/ndt/gfy305

19. Miao H, Liu L, Wang Y. Chronic kidney disease biomarkers and mortality among older adults: A comparison study of survey samples in China and the United States. PLoS ONE. 2022;17(1):e0260074. DOI: 10.1371/journal.pone.0260074

20. Liu H, Wang R. Associations between the serum magnesium and all-cause or cardiovascular mortality in chronic kidney disease and end-stage renal disease patients. A meta-analysis. Medicine. 2021;100(45):e27486. DOI: 10.1097/MD.0000000000027486

21. Zeng YQ, Qin ZA, Guo ZW. Non- linear relationship between basal serum albumin concentration and cardiac arrest in critically ill patients with end-stage renal disease: a cross-sectional study. BMJ Open. 2022;12(2):e051721. DOI: 10.1136/bmjopen-2021-051721

22. Wittbrodt E, James G, Kumar S. Contemporary outcomes of anemia in US patients with chronic kidney disease. Clinical Kidney Journal. 2022;15(2):244-52. DOI: 10.1093/ckj/sfab195

Published

2024-02-01

How to Cite

1.
Escalona González SO, Caballero Mota Y, Rodríguez Alvarez Y, León Acebo M, González Milán ZC, Ricardo Paez B, et al. Design of a mortality predictive scale in patients with chronic kidney disease. Rev Cubana Med Milit [Internet]. 2024 Feb. 1 [cited 2025 Mar. 31];53(1):e024017622. Available from: https://revmedmilitar.sld.cu/index.php/mil/article/view/17622

Issue

Section

Research Article