Design of a mortality predictive scale in patients with chronic kidney disease
Keywords:
chronic kidney disease, forecast, mortality.Abstract
Introduction: The prediction of mortality in patients with chronic kidney disease using scales or prognostic indices has real limitations.Objective: Design a mortality predictive scale in patients with chronic kidney disease.
Methods: A prospective observational, analytical, longitudinal study was carried out in 169 patients with chronic kidney disease from January 1, 2022 to December 31, 2022. The research was developed in 2 stages: during the first 6 months of the year, the variables were analyzed for the design of the predictive scale. In the next 6 months, patients were followed to identify the occurrence or not of the dependent variable mortality. The discriminatory capacity of the predictive scale was determined and survival curves were evaluated.
Results: The variables that made up the predictive tool were age > 65 years, cardiovascular disease, albumin < 35 g/L, dyslipidemia, hemoglobin < 10 g/L, and uric acid > 390 mmol/L. The discriminatory power to predict mortality was good, C index: 0.856 (95% CI: 0.783-0.929; p< 0.001). Patients with values less than 4 points had a mean survival of 149.438 ± 7.296 days. In contrast, those with higher values presented a mean survival of 93.128 ± 8.545 days.
Conclusions: The scale contributed to the stratification of the mortality risk of the patients. The variables included are easy to determine and interpret, making it a useful model for medical decision making in the current clinical setting.
Downloads
References
2. Anuario Estadístico de Salud, 2021. Ministerio de Salud Pública. Dirección de Registros médicos y Estadísticas de salud. La Habana, 2022. [acceso: 15/05/2023]. Disponible en: http://bvscuba.sld.cu/anuario-estadistico-de-cuba/
3. Khoo C, Gao F, Choong H. Death and cardiovascular outcomes in end-stage renal failure patients on different modalities of dialysis. Ann Acad Med Singap. 2022 [acceso: 15/05/2023];51(3):136-42. DOI: 10.47102/annals-acadmedsg.20219
4. González-Milán ZC, Escalona-González SO, Ramírez-Fernández A. Factores pronósticos de mortalidad en pacientes con insuficiencia renal crónica terminal en terapia hemodialítica. Revista Electrónica Dr. Zoilo E. Marinello Vidaurreta. 2019 [acceso: 15/05/2023]; 44(6):1-14. Disponible en: http://revzoilomarinello.sld.cu/index.php/zmv/article/view/2041
5. Escalona González SO, González Milán ZC. Inteligencia artificial en la predicción de mortalidad por enfermedad renal crónica. An Acad Cienc Cuba. 2022 [acceso: 15/05/2023];12(3):e1292. Disponible en: http://www.revistaccuba.cu/index.php/revacc/article/view/1292
6. Belur Nagaraj S, Pena MJ, Ju W, The BEAt-DKD Consortium. Machine-learning- based early prediction of end-stage renal disease in patients with diabetic kidney disease using clinical trials data. Diabetes Obes Metab. 2020 [acceso:15/05/2023];22(12):2479-86. DOI: 10.1111/dom.14178
7. Gamboa Graus ME. Estadística aplicada a la investigación educativa. Revista Dilemas Contemporáneos: Educación, política y valores. 2018 [acceso:15/05/2023];5(2):1-32. Disponible en: http://www.dilemascontemporaneoseducacionpoliticayvalores.com/index.php/dile-mas/article/view/427/443
8. Marín Prada MdC, Gutiérrez García F, Martínez Morales MA. Características y causas de muerte de pacientes fallecidos con enfermedad renal crónica. Cuba 2011-2016. Revista Habanera de Ciencias Médicas. 2021 [acceso: 15/05/2023];20(5):e3579. Disponible en: https://revhabanera.sld.cu/index.php/rhab/article/view/3579
9. Ruperto M, Barril G. Nutritional status, body composition, and inflammation profile in older patients with advanced chronic kidney disease stage 4-5: A case control study. Nutrients. 2022 [acceso:15/05/2023];14(17):3650. DOI: 10.3390/nu14173650
10. Matsushita K, Ballew S, Wang A. Epidemiology and risk of cardiovascular disease in populations with chronic kidney disease. Nature Reviews Nephrology. 2022 [acceso: 15/05/2023];18(11):696-707. DOI: 10.1038/s41581-022-00616-6
11. Lee S, Kang S, Joo Y. Smoking, smoking cessation, and progression of chronic kidney disease: results form KNOW-CKD study. Nicotine & Tobacco Research. 2021 [acceso: 15/05/2023];23(1):92-98. DOI: 10. 1093/ntr/ntaa071
12. Liang X, Ye M, Tao M. The association between dyslipidemia and the incidence of chronic kidney disease in the general Zhejiang population: a retrospective study. BMC Nephrol. 2020 [acceso:15/05/2023]; 21(252):1-9. DOI: 10. 1186/s12882-020-01907-5
13. Feng-Ching S, Yi-Wen Ch, Mei-Chuan K. U-shaped association between waist-to-hip ratio and all-cause mortality in stage 3-5 chronic kidney disease patients with body mass index paradox. J Pers Med. 2021 [acceso: 15/05/2023];11(12):1355. DOI: 10.3390/jpm11121355
14. Miao H, Liu L, Wang Y. Chronic kidney disease biomarkers and mortality among older adults: A comparison study of survey samples in China and the United States. Plos One. 2022 [acceso:15/05/2023];17(1):e0260074. DOI: 10.1371/journal.pone.0260074
15. Cornish R, Bartlett J, Macleod J. Complete case logistic regression with a dichotomized continuous outcome led to biased estimates. Journal of Clinical Epidemiology. 2023 [acceso: 15/05/2023];154(2023):33-41. DOI: 10.1016/j.jclinepi.2022.11.022
16. Montalescot L, Dorard G, Speyer G. Patient perspectives on chronic kidney disease and decision-making about treatment. Discourse of participants in the French CKD-REIN cohort study. J. Nephrol. 2022 [acceso: 15/05/2023];35(5):1387-1397. DOI: 10.1007/s40620-022-01345-6
17. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. Reviewing the latest version. Int. J. Surg. Sci. 2014 [acceso: 15/05/2023];1(4):339-46. DOI: 10.32457/IJMSS.2014.042
18. Schmidt RJ, Landry DL, Cohen L. Derivation and validation of a prognostic model to predict mortality in patients with advanced chronic kidney disease. Nephrol Dial Transplant. 2019;34(9):1517-25. DOI: 10.1093/ndt/gfy305
19. Miao H, Liu L, Wang Y. Chronic kidney disease biomarkers and mortality among older adults: A comparison study of survey samples in China and the United States. PLoS ONE. 2022;17(1):e0260074. DOI: 10.1371/journal.pone.0260074
20. Liu H, Wang R. Associations between the serum magnesium and all-cause or cardiovascular mortality in chronic kidney disease and end-stage renal disease patients. A meta-analysis. Medicine. 2021;100(45):e27486. DOI: 10.1097/MD.0000000000027486
21. Zeng YQ, Qin ZA, Guo ZW. Non- linear relationship between basal serum albumin concentration and cardiac arrest in critically ill patients with end-stage renal disease: a cross-sectional study. BMJ Open. 2022;12(2):e051721. DOI: 10.1136/bmjopen-2021-051721
22. Wittbrodt E, James G, Kumar S. Contemporary outcomes of anemia in US patients with chronic kidney disease. Clinical Kidney Journal. 2022;15(2):244-52. DOI: 10.1093/ckj/sfab195
Published
How to Cite
Issue
Section
License
Authors who have publications with this Journal accept the following terms:
- The authors will retain their copyright and guarantee the Journal the right of first publication of their work, which will simultaneously be subject to the Creative Commons Attribution License. The content presented here can be shared, copied and redistributed in any medium or format; Can be adapted, remixed, transformed or created from the material, using the following terms: Attribution (giving appropriate credit to the work, providing a link to the license, and indicating if changes have been made); non-commercial (you cannot use the material for commercial purposes) and share-alike (if you remix, transform or create new material from this work, you can distribute your contribution as long as you use the same license as the original work).
- The authors may adopt other non-exclusive license agreements for the distribution of the published version of the work (for example: depositing it in an institutional electronic archive or publishing it in a monographic volume) as long as the initial publication in this Journal is indicated.
- Authors are allowed and recommended to disseminate their work through the Internet (e.g., in institutional electronic archives or on their website) before and during the submission process, which can produce interesting exchanges and increase citations. of the published work.